結果

問題 No.235 めぐるはめぐる (5)
ユーザー vwxyzvwxyz
提出日時 2022-03-25 02:30:18
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 7,421 ms / 10,000 ms
コード長 17,714 bytes
コンパイル時間 310 ms
コンパイル使用メモリ 82,328 KB
実行使用メモリ 266,268 KB
最終ジャッジ日時 2024-10-13 09:46:46
合計ジャッジ時間 27,872 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 7,421 ms
266,024 KB
testcase_01 AC 4,674 ms
257,780 KB
testcase_02 AC 7,040 ms
266,268 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
readline=sys.stdin.readline

class Graph:
    def __init__(self,V,edges=False,graph=False,directed=False,weighted=False,inf=float("inf")):
        self.V=V
        self.directed=directed
        self.weighted=weighted
        self.inf=inf
        if graph:
            self.graph=graph
            self.edges=[]
            for i in range(self.V):
                if self.weighted:
                    for j,d in self.graph[i]:
                        if self.directed or not self.directed and i<=j:
                            self.edges.append((i,j,d))
                else:
                    for j in self.graph[i]:
                        if self.directed or not self.directed and i<=j:
                            self.edges.append((i,j))
        else:
            self.edges=edges
            self.graph=[[] for i in range(self.V)]
            if weighted:
                for i,j,d in self.edges:
                    self.graph[i].append((j,d))
                    if not self.directed:
                        self.graph[j].append((i,d))
            else:
                for i,j in self.edges:
                    self.graph[i].append(j)
                    if not self.directed:
                        self.graph[j].append(i)

    def SIV_DFS(self,s,bipartite_graph=False,cycle_detection=False,directed_acyclic=False,euler_tour=False,linked_components=False,lowlink=False,parents=False,postorder=False,preorder=False,subtree_size=False,topological_sort=False,unweighted_dist=False,weighted_dist=False):
        seen=[False]*self.V
        finished=[False]*self.V
        if directed_acyclic or cycle_detection or topological_sort:
            dag=True
        if euler_tour:
            et=[]
        if linked_components:
            lc=[]
        if lowlink:
            order=[None]*self.V
            ll=[None]*self.V
            idx=0
        if parents or cycle_detection or lowlink or subtree_size:
            ps=[None]*self.V
        if postorder or topological_sort:
            post=[]
        if preorder:
            pre=[]
        if subtree_size:
            ss=[1]*self.V
        if unweighted_dist or bipartite_graph:
            uwd=[self.inf]*self.V
            uwd[s]=0
        if weighted_dist:
            wd=[self.inf]*self.V
            wd[s]=0
        stack=[(s,0)] if self.weighted else [s]
        while stack:
            if self.weighted:
                x,d=stack.pop()
            else:
                x=stack.pop()
            if not seen[x]:
                seen[x]=True
                stack.append((x,d) if self.weighted else x)
                if euler_tour:
                    et.append(x)
                if linked_components:
                    lc.append(x)
                if lowlink:
                    order[x]=idx
                    ll[x]=idx
                    idx+=1
                if preorder:
                    pre.append(x)
                for y in self.graph[x]:
                    if self.weighted:
                        y,d=y
                    if not seen[y]:
                        stack.append((y,d) if self.weighted else y)
                        if parents or cycle_detection or lowlink or subtree_size:
                            ps[y]=x
                        if unweighted_dist or bipartite_graph:
                            uwd[y]=uwd[x]+1
                        if weighted_dist:
                            wd[y]=wd[x]+d
                    elif not finished[y]:
                        if (directed_acyclic or cycle_detection or topological_sort) and dag:
                            dag=False
                            if cycle_detection:
                                cd=(y,x)
            elif not finished[x]:
                finished[x]=True
                if euler_tour:
                    et.append(~x)
                if lowlink:
                    bl=True
                    for y in self.graph[x]:
                        if self.weighted:
                            y,d=y
                        if ps[x]==y and bl:
                            bl=False
                            continue
                        ll[x]=min(ll[x],order[y])
                    if x!=s:
                        ll[ps[x]]=min(ll[ps[x]],ll[x])
                if postorder or topological_sort:
                    post.append(x)
                if subtree_size:
                    for y in self.graph[x]:
                        if self.weighted:
                            y,d=y
                        if y==ps[x]:
                            continue
                        ss[x]+=ss[y]
        if bipartite_graph:
            bg=[[],[]]
            for tpl in self.edges:
                x,y=tpl[:2] if self.weighted else tpl
                if uwd[x]==self.inf or uwd[y]==self.inf:
                    continue
                if not uwd[x]%2^uwd[y]%2:
                    bg=False
                    break
            else:
                for x in range(self.V):
                    if uwd[x]==self.inf:
                        continue
                    bg[uwd[x]%2].append(x)
        retu=()
        if bipartite_graph:
            retu+=(bg,)
        if cycle_detection:
            if dag:
                cd=[]
            else:
                y,x=cd
                cd=self.Route_Restoration(y,x,ps)
            retu+=(cd,)
        if directed_acyclic:
            retu+=(dag,)
        if euler_tour:
            retu+=(et,)
        if linked_components:
            retu+=(lc,)
        if lowlink:
            retu=(ll,)
        if parents:
            retu+=(ps,)
        if postorder:
            retu+=(post,)
        if preorder:
            retu+=(pre,)
        if subtree_size:
            retu+=(ss,)
        if topological_sort:
            if dag:
                tp_sort=post[::-1]
            else:
                tp_sort=[]
            retu+=(tp_sort,)
        if unweighted_dist:
            retu+=(uwd,)
        if weighted_dist:
            retu+=(wd,)
        if len(retu)==1:
            retu=retu[0]
        return retu

    def Build_HLD(self,s):
        self.hld_parents,size,self.hld_depth=self.SIV_DFS(s,parents=True,subtree_size=True,unweighted_dist=True)
        stack=[s]
        self.hld_tour=[]
        self.hld_path_parents=[None]*self.V
        self.hld_path_parents[s]=s
        while stack:
            x=stack.pop()
            self.hld_tour.append(x)
            max_size=0
            max_size_y=None
            for y in self.graph[x]:
                if self.weighted:
                    y,d=y
                if y==self.hld_parents[x]:
                    continue
                if max_size<size[y]:
                    max_size=size[y]
                    max_size_y=y
            for y in self.graph[x]:
                if self.weighted:
                    y,d=y
                if y==self.hld_parents[x]:
                    continue
                if y!=max_size_y:
                    stack.append(y)
                    self.hld_path_parents[y]=y
            if max_size_y!=None:
                stack.append(max_size_y)
                self.hld_path_parents[max_size_y]=self.hld_path_parents[x]
        self.hld_tour_idx=[None]*self.V
        for i in range(self.V):
            self.hld_tour_idx[self.hld_tour[i]]=i

    def HLD(self,a,b,edge=False):
        L,R=[],[]
        while self.hld_path_parents[a]!=self.hld_path_parents[b]:
            if self.hld_depth[self.hld_path_parents[a]]<self.hld_depth[self.hld_path_parents[b]]:
                R.append((self.hld_tour_idx[self.hld_path_parents[b]],self.hld_tour_idx[b]+1))
                b=self.hld_parents[self.hld_path_parents[b]]
            else:
                L.append((self.hld_tour_idx[a]+1,self.hld_tour_idx[self.hld_path_parents[a]]))
                a=self.hld_parents[self.hld_path_parents[a]]
        if edge:
            if self.hld_depth[a]!=self.hld_depth[b]:
                retu=L+[(self.hld_tour_idx[a]+1,self.hld_tour_idx[b]+1)]+R[::-1]
            else:
                retu=L+R[::-1]
        else:
            if self.hld_depth[a]<self.hld_depth[b]:
                retu=L+[(self.hld_tour_idx[a],self.hld_tour_idx[b]+1)]+R[::-1]
            else:
                retu=L+[(self.hld_tour_idx[a]+1,self.hld_tour_idx[b])]+R[::-1]
        return retu

class Lazy_Segment_Tree:
    def __init__(self,N,f,e,f_act,e_act,operate,lst=None):
        self.N=N
        self.f=f
        self.e=e
        self.f_act=f_act
        self.e_act=e_act
        self.operate=operate
        self.segment_tree=[self.e]*(self.N+self.N)
        self.segment_tree_act=[self.e_act]*(self.N+self.N)
        if lst!=None:
            for i,x in enumerate(lst):
                self.segment_tree[i+self.N]=x
            for i in range(self.N-1,0,-1):
                self.segment_tree[i]=self.f(self.segment_tree[i<<1],self.segment_tree[i<<1|1])
            self.segment_tree_act=[self.e_act]*(self.N+self.N)

    def __getitem__(self,i):
        if type(i) is int:
            if -self.N<=i<0:
                i+=self.N*2
            elif 0<=i<self.N:
                i+=self.N
            else:
                raise IndexError('list index out of range')
            self.Propagate_Above(i)
            self.Recalculate_Above(i)
            return self.Operate_At(i)
        else:
            a,b,c=i.start,i.stop,i.step
            if a==None or a<-self.N:
                a=self.N
            elif self.N<=a:
                a=self.N*2
            elif a<0:
                a+=self.N*2
            else:
                a+=self.N
            if b==None or self.N<=b:
                b=self.N*2
            elif b<-self.N:
                b=self.N
            elif b<0:
                b+=self.N*2
            else:
                b+=self.N
            return self.segment_tree[slice(a,b,c)]

    def __setitem__(self,i,x):
        if -self.N<=i<0:
            i+=self.N*2
        elif 0<=i<self.N:
            i+=self.N
        else:
            raise IndexError('list index out of range')
        self.Propagate_Above(i)
        self.segment_tree[i]=x
        self.segment_tree_act[i]=self.e_act
        self.Recalculate_Above(i)

    def Operate_At(self,i):
        return self.operate(self.segment_tree[i],self.segment_tree_act[i])

    def Propagate_At(self,i):
        self.segment_tree[i]=self.Operate_At(i)
        self.segment_tree_act[i<<1]=self.f_act(self.segment_tree_act[i<<1],self.segment_tree_act[i])
        self.segment_tree_act[i<<1|1]=self.f_act(self.segment_tree_act[i<<1|1],self.segment_tree_act[i])
        self.segment_tree_act[i]=self.e_act

    def Propagate_Above(self,i):
        H=i.bit_length()-1
        for h in range(H,0,-1):
            self.Propagate_At(i>>h)

    def Recalculate_Above(self,i):
        while i>1:
            i>>=1
            self.segment_tree[i]=self.f(self.Operate_At(i<<1),self.Operate_At(i<<1|1))

    def Build(self,lst):
        for i,x in enumerate(lst):
            self.segment_tree[i+self.N]=x
        for i in range(self.N-1,0,-1):
            self.segment_tree[i]=self.f(self.segment_tree[i<<1],self.segment_tree[i<<1|1])
        self.segment_tree_act=[self.e_act]*(self.N+self.N)

    def Fold(self,L=None,R=None):
        if L==None:
            L=self.N
        else:
            L+=self.N
        if R==None:
            R=self.N*2
        else:
            R+=self.N
        self.Propagate_Above(L//(L&-L))
        self.Propagate_Above(R//(R&-R)-1)
        vL=self.e
        vR=self.e
        while L<R:
            if L&1:
                vL=self.f(vL,self.Operate_At(L))
                L+=1
            if R&1:
                R-=1
                vR=self.f(self.Operate_At(R),vR)
            L>>=1
            R>>=1
        return self.f(vL,vR)

    def Fold_Index(self,L=None,R=None):
        if L==None:
            L=self.N
        else:
            L+=self.N
        if R==None:
            R=self.N*2
        else:
            R+=self.N
        if L==R:
            return None
        x=self.Fold(L-self.N,R-self.N)
        while L<R:
            if L&1:
                if self.segment_tree[L]==x:
                    i=L
                    break
                L+=1
            if R&1:
                R-=1
                if self.segment_tree[R]==x:
                    i=R
                    break
            L>>=1
            R>>=1
        while i<self.N:
            if self.segment_tree[i]==self.segment_tree[i<<1]:
                i<<=1
            else:
                i<<=1
                i|=1
        i-=self.N
        return i

    def Operate_Range(self,a,L=None,R=None):
        if L==None:
            L=self.N
        else:
            L+=self.N
        if R==None:
            R=self.N*2
        else:
            R+=self.N
        L0=L//(L&-L)
        R0=R//(R&-R)-1
        self.Propagate_Above(L0)
        self.Propagate_Above(R0)
        while L<R:
            if L&1:
                self.segment_tree_act[L]=self.f_act(self.segment_tree_act[L],a)
                L+=1
            if R&1:
                R-=1
                self.segment_tree_act[R]=self.f_act(self.segment_tree_act[R],a)
            L>>=1
            R>>=1
        self.Recalculate_Above(L0)
        self.Recalculate_Above(R0)

    def Update(self):
        for i in range(1,self.N):
            self.Propagate_At(i)
        for i in range(self.N,self.N*2):
            self.segment_tree[i]=self.Operate_At(i)
            self.segment_tree_act[i]=self.e_act
        for i in range(self.N-1,0,-1):
            self.segment_tree[i]=self.f(self.segment_tree[i<<1],self.segment_tree[i<<1|1])

    def Bisect_Right(self,L=None,f=None):
        if L==self.N:
            return self.N
        if L==None:
            L=0
        L+=self.N
        self.Propagate_Above(L//(L&-L))
        self.Propagate_Above(self.N//(self.N&-self.N)-1)
        l,r=L,self.N*2
        vl=self.e
        vr=self.e
        while l<r:
            if l&1:
                vl=self.f(vl,self.Operate_At(l))
                l+=1
            if r&1:
                r-=1
                vr=self.f(self.Operate_At(r),vr)
            l>>=1
            r>>=1
        if f(self.f(vl,vr)):
            return self.N
        v=self.e
        self.Propagate_Above(L)
        while True:
            while L%2==0:
                L>>=1
            vv=self.f(v,self.Operate_At(L))
            if f(vv):
                v=vv
                L+=1
            else:
                while L<self.N:
                    self.Propagate_At(L)
                    L<<=1
                    vv=self.f(v,self.Operate_At(L))
                    if f(vv):
                        v=vv
                        L+=1
                return L-self.N

    def Bisect_Left(self,R=None,f=None):
        if R==0:
            return 0
        if R==None:
            R=self.N
        R+=self.N
        self.Propagate_Above(self.N//(self.N&-self.N))
        self.Propagate_Above(R//(R&-R)-1)
        vl=self.e
        vr=self.e
        l,r=self.N,R
        while l<r:
            if l&1:
                vl=self.f(vl,self.Operate_At(l))
                l+=1
            if r&1:
                r-=1
                vr=self.f(self.Operate_At(r),vr)
            l>>=1
            r>>=1
        if f(self.f(vl,vr)):
            return 0
        v=self.e
        self.Propagate_Above(R-1)
        while True:
            R-=1
            while R>1 and R%2:
                R>>=1
            vv=self.f(self.Operate_At(R),v)
            if f(vv):
                v=vv
            else:
                while R<self.N:
                    self.Propagate_At(R)
                    R=(R<<1)|1
                    vv=self.f(self.Operate_At(R),v)
                    if f(vv):
                        v=vv
                        R-=1
                return R+1-self.N

    def __str__(self):
        import copy
        segment_tree=copy.deepcopy(self.segment_tree)
        segment_tree_act=copy.deepcopy(self.segment_tree_act)
        for i in range(1,self.N):
            segment_tree[i]=self.operate(segment_tree[i],segment_tree_act[i])
            segment_tree_act[i<<1]=self.f_act(segment_tree_act[i<<1],segment_tree_act[i])
            segment_tree_act[i<<1|1]=self.f_act(segment_tree_act[i<<1|1],segment_tree_act[i])
            segment_tree_act[i]=self.e_act
        for i in range(self.N,self.N*2):
            segment_tree[i]=self.operate(segment_tree[i],segment_tree_act[i])
            segment_tree_act[i]=self.e_act
        for i in range(self.N-1,0,-1):
            segment_tree[i]=self.f(segment_tree[i<<1],segment_tree[i<<1|1])
        return '['+', '.join(map(str,[self.operate(x,a) for x,a in zip(segment_tree[self.N:],segment_tree_act[self.N:])]))+']'

N=int(readline())
mod=10**9+7
S=list(map(int,readline().split()))
C=list(map(int,readline().split()))
edges=[]
for _ in range(N-1):
    A,B=map(int,readline().split())
    A-=1;B-=1
    edges.append((A,B))
G=Graph(N,edges=edges)
G.Build_HLD(0)
def f(tpl0,tpl1):
    s0,c0=tpl0
    s1,c1=tpl1
    s=(s0+s1)%mod
    c=(c0+c1)%mod
    return (s,c)
e=(0,0)
def f_act(a,b):
    return (a+b)%mod
e_act=0
def operate(tpl,a):
    s,c=tpl
    return ((s+c*a)%mod,c)
LST=Lazy_Segment_Tree(N,f,e,f_act,e_act,operate,[(S[i],C[i]) for i in G.hld_tour])
Q=int(readline())
for _ in range(Q):
    data=map(int,readline().split())
    if next(data)==0:
        X,Y,Z=data
        X-=1
        Y-=1
        for a,b in G.HLD(X,Y):
            if a>b:
                a,b=b,a
            LST.Operate_Range(Z,a,b)
    else:
        X,Y=data
        ans=0
        X-=1
        Y-=1
        for a,b in G.HLD(X,Y):
            if a>b:
                a,b=b,a
            ans+=LST.Fold(a,b)[0]
            ans%=mod
        print(ans)
0