結果
| 問題 |
No.616 へんなソート
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2022-03-25 18:03:52 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 104 ms / 2,000 ms |
| コード長 | 6,502 bytes |
| コンパイル時間 | 3,831 ms |
| コンパイル使用メモリ | 234,796 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-10-14 02:33:41 |
| 合計ジャッジ時間 | 5,376 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 27 |
コンパイルメッセージ
main.cpp:14: warning: "rep" redefined
14 | #define rep(i, n) rep2(i, 0, n)
|
main.cpp:7: note: this is the location of the previous definition
7 | #define rep(i, n) for (int i = 0; i < (int)(n); i++)
|
main.cpp: In member function 'FormalPowerSeries<T>::F& FormalPowerSeries<T>::operator*=(std::vector<std::pair<int, E> >)':
main.cpp:131:14: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17' [-Wc++17-extensions]
131 | auto [d, c] = g.front();
| ^
main.cpp:136:24: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17' [-Wc++17-extensions]
136 | for (auto& [j, b] : g) {
| ^
main.cpp: In member function 'FormalPowerSeries<T>::F& FormalPowerSeries<T>::operator/=(std::vector<std::pair<int, E> >)':
main.cpp:145:14: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17' [-Wc++17-extensions]
145 | auto [d, c] = g.front();
| ^
main.cpp:150:24: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17' [-Wc++17-extensions]
150 | for (auto& [j, b] : g) {
| ^
ソースコード
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
#define all(A) A.begin(),A.end()
using vll = vector<ll>;
using vvll = vector<vll>;
#define rep(i, n) for (int i = 0; i < (int)(n); i++)
vvll G;
#include<atcoder/all>
using namespace atcoder;
#define rep2(i, m, n) for (int i = (m); i < (n); ++i)
#define rep(i, n) rep2(i, 0, n)
#define drep2(i, m, n) for (int i = (m)-1; i >= (n); --i)
#define drep(i, n) drep2(i, n, 0)
template<class T>
struct FormalPowerSeries : vector<T> {
using vector<T>::vector;
using vector<T>::operator=;
using F = FormalPowerSeries;
F operator-() const {
F res(*this);
for (auto& e : res) e = -e;
return res;
}
F& operator*=(const T& g) {
for (auto& e : *this) e *= g;
return *this;
}
F& operator/=(const T& g) {
assert(g != T(0));
*this *= g.inv();
return *this;
}
F& operator+=(const F& g) {
int n = (*this).size(), m = g.size();
rep(i, min(n, m)) (*this)[i] += g[i];
return *this;
}
F& operator-=(const F& g) {
int n = (*this).size(), m = g.size();
rep(i, min(n, m)) (*this)[i] -= g[i];
return *this;
}
F& operator<<=(const int d) {
int n = (*this).size();
(*this).insert((*this).begin(), d, 0);
(*this).resize(n);
return *this;
}
F& operator>>=(const int d) {
int n = (*this).size();
(*this).erase((*this).begin(), (*this).begin() + min(n, d));
(*this).resize(n);
return *this;
}
F inv(int d = -1) const {
int n = (*this).size();
assert(n != 0 && (*this)[0] != 0);
if (d == -1) d = n;
assert(d > 0);
F res{ (*this)[0].inv() };
while (res.size() < d) {
int m = size(res);
F f(begin(*this), begin(*this) + min(n, 2 * m));
F r(res);
f.resize(2 * m), internal::butterfly(f);
r.resize(2 * m), internal::butterfly(r);
rep(i, 2 * m) f[i] *= r[i];
internal::butterfly_inv(f);
f.erase(f.begin(), f.begin() + m);
f.resize(2 * m), internal::butterfly(f);
rep(i, 2 * m) f[i] *= r[i];
internal::butterfly_inv(f);
T iz = T(2 * m).inv(); iz *= -iz;
rep(i, m) f[i] *= iz;
res.insert(res.end(), f.begin(), f.begin() + m);
}
return { res.begin(), res.begin() + d };
}
// fast: FMT-friendly modulus only
F &operator*=(const F &g) {
int n = (*this).size();
*this = convolution(*this, g);
(*this).resize(n);
return *this;
}
/*
F &operator/=(const F &g) {
int n = (*this).size();
*this = convolution(*this, g.inv(n));
(*this).resize(n);
return *this;
}
*/
/*
// naive
F &operator*=(const F &g) {
int n = (*this).size(), m = g.size();
drep(i, n) {
(*this)[i] *= g[0];
rep2(j, 1, min(i+1, m)) (*this)[i] += (*this)[i-j] * g[j];
}
return *this;
}
*/
F &operator/=(const F &g) {
assert(g[0] != T(0));
T ig0 = g[0].inv();
int n = (*this).size(), m = g.size();
rep(i, n) {
rep2(j, 1, min(i+1, m)) (*this)[i] -= (*this)[i-j] * g[j];
(*this)[i] *= ig0;
}
return *this;
}
// sparse
F& operator*=(vector<pair<int, T>> g) {
int n = (*this).size();
auto [d, c] = g.front();
if (d == 0) g.erase(g.begin());
else c = 0;
drep(i, n) {
(*this)[i] *= c;
for (auto& [j, b] : g) {
if (j > i) break;
(*this)[i] += (*this)[i - j] * b;
}
}
return *this;
}
F& operator/=(vector<pair<int, T>> g) {
int n = (*this).size();
auto [d, c] = g.front();
assert(d == 0 && c != T(0));
T ic = c.inv();
g.erase(g.begin());
rep(i, n) {
for (auto& [j, b] : g) {
if (j > i) break;
(*this)[i] -= (*this)[i - j] * b;
}
(*this)[i] *= ic;
}
return *this;
}
// multiply and divide (1 + cz^d)
void multiply(const int d, const T c) {
int n = (*this).size();
if (c == T(1)) drep(i, n - d) (*this)[i + d] += (*this)[i];
else if (c == T(-1)) drep(i, n - d) (*this)[i + d] -= (*this)[i];
else drep(i, n - d) (*this)[i + d] += (*this)[i] * c;
}
void divide(const int d, const T c) {
int n = (*this).size();
if (c == T(1)) rep(i, n - d) (*this)[i + d] -= (*this)[i];
else if (c == T(-1)) rep(i, n - d) (*this)[i + d] += (*this)[i];
else rep(i, n - d) (*this)[i + d] -= (*this)[i] * c;
}
T eval(const T& a) const {
T x(1), res(0);
for (auto e : *this) res += e * x, x *= a;
return res;
}
F operator*(const T& g) const { return F(*this) *= g; }
F operator/(const T& g) const { return F(*this) /= g; }
F operator+(const F& g) const { return F(*this) += g; }
F operator-(const F& g) const { return F(*this) -= g; }
F operator<<(const int d) const { return F(*this) <<= d; }
F operator>>(const int d) const { return F(*this) >>= d; }
F operator*(const F& g) const { return F(*this) *= g; }
F operator/(const F& g) const { return F(*this) /= g; }
F operator*(vector<pair<int, T>> g) const { return F(*this) *= g; }
F operator/(vector<pair<int, T>> g) const { return F(*this) /= g; }
};
using mint = modint1000000007;
using F = FormalPowerSeries<mint>;
vector<ll> fact, factinv, inv;
ll mod = 1e9 + 7;
void prenCkModp(ll n) {
fact.resize(n + 5);
factinv.resize(n + 5);
inv.resize(n + 5);
fact.at(0) = fact.at(1) = 1;
factinv.at(0) = factinv.at(1) = 1;
inv.at(1) = 1;
for (ll i = 2; i < n + 5; i++) {
fact.at(i) = (fact.at(i - 1) * i) % mod;
inv.at(i) = mod - (inv.at(mod % i) * (mod / i)) % mod;
factinv.at(i) = (factinv.at(i - 1) * inv.at(i)) % mod;
}
}
ll nCk(ll n, ll k) {
if (n < k) return 0;
return fact.at(n) * (factinv.at(k) * factinv.at(n - k) % mod) % mod;
}
int main() {
ll N, K;
cin >> N >> K;
F f = { 1 };
f.resize(N * N);
rep(i, N) {
f.multiply(i + 1, -1);
f.divide(1, -1);
}
f.divide(1, -1);
cout << f[K].val() << endl;
}