結果

問題 No.1886 Sum of Slide Max
ユーザー ForestedForested
提出日時 2022-03-25 21:55:32
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 47 ms / 2,000 ms
コード長 8,564 bytes
コンパイル時間 1,219 ms
コンパイル使用メモリ 123,264 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-10-14 05:51:46
合計ジャッジ時間 2,668 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 1 ms
5,248 KB
testcase_05 AC 43 ms
5,248 KB
testcase_06 AC 4 ms
5,248 KB
testcase_07 AC 34 ms
5,248 KB
testcase_08 AC 46 ms
5,248 KB
testcase_09 AC 45 ms
5,248 KB
testcase_10 AC 47 ms
5,248 KB
testcase_11 AC 45 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// ===== template.hpp =====
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cmath>
#include <iomanip>
#include <iostream>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

#define OVERRIDE(a, b, c, d, ...) d
#define REP2(i, n) for (i32 i = 0; i < (i32) (n); ++i)
#define REP3(i, m, n) for (i32 i = (i32) (m); i < (i32) (n); ++i)
#define REP(...) OVERRIDE(__VA_ARGS__, REP3, REP2)(__VA_ARGS__)
#define PER(i, n) for (i32 i = (i32) (n) - 1; i >= 0; --i)
#define ALL(x) begin(x), end(x)

using namespace std;

using u32 = unsigned int;
using u64 = unsigned long long;
using u128 = __uint128_t;
using i32 = signed int;
using i64 = signed long long;
using i128 = __int128_t;

template <typename T>
using Vec = vector<T>;

template <typename T>
bool chmin(T &x, const T &y) {
    if (x > y) {
        x = y;
        return true;
    }
    return false;
}
template <typename T>
bool chmax(T &x, const T &y) {
    if (x < y) {
        x = y;
        return true;
    }
    return false;
}

[[maybe_unused]] constexpr i32 inf = 1000000100;
[[maybe_unused]] constexpr i64 inf64 = 3000000000000000100;

struct SetIO {
    SetIO() {
        ios::sync_with_stdio(false);
        cin.tie(nullptr);
        cout << fixed << setprecision(10);
    }
} set_io;
// ===== template.hpp =====

#ifdef DEBUGF
#include  "../new_library/other/debug.hpp"
#else
#define DBG(x) (void) 0
#endif

// ===== mod_int.hpp =====
#ifndef MOD_INT_HPP
#define MOD_INT_HPP

#include <cassert>
#include <iostream>
#include <type_traits>

// ===== utils.hpp =====
#ifndef UTILS_HPP
#define UTILS_HPP

#include <cstddef>

constexpr bool is_prime(unsigned n) {
    if (n == 0 || n == 1)
        return false;
    for (unsigned i = 2; i * i <= n; ++i) {
        if (n % i == 0)
            return false;
    }
    return true;
}

constexpr unsigned mod_pow(unsigned x, unsigned y, unsigned mod) {
    unsigned ret = 1, self = x;
    while (y != 0) {
        if (y & 1)
            ret = (unsigned long long)ret * self % mod;
        self = (unsigned long long)self * self % mod;
        y >>= 1;
    }
    return ret;
}

template <unsigned mod>
constexpr unsigned primitive_root() {
    static_assert(is_prime(mod), "`mod` must be a prime number.");
    if (mod == 2)
        return 1;

    unsigned primes[32] = {};
    std::size_t it = 0;
    {
        unsigned m = mod - 1;
        for (unsigned i = 2; i * i <= m; ++i) {
            if (m % i == 0) {
                primes[it++] = i;
                while (m % i == 0)
                    m /= i;
            }
        }
        if (m != 1)
            primes[it++] = m;
    }
    for (unsigned i = 2; i < mod; ++i) {
        bool ok = true;
        for (std::size_t j = 0; j < it; ++j) {
            if (mod_pow(i, (mod - 1) / primes[j], mod) == 1) {
                ok = false;
                break;
            }
        }
        if (ok)
            return i;
    }
    return 0;
}

#endif
// ===== utils.hpp =====

template <typename T, std::enable_if_t<std::is_signed_v<T>> * = nullptr>
constexpr unsigned safe_mod(T x, unsigned mod) {
    if (x < 0) {
        return (unsigned)(x % (T)mod + mod);
    } else {
        return (unsigned)(x % (T)mod);
    }
}

template <typename T, std::enable_if_t<std::is_unsigned_v<T>> * = nullptr>
constexpr unsigned safe_mod(T x, unsigned mod) {
    return (unsigned)(x % mod);
}

template <unsigned mod>
class ModInt {
    static_assert(mod != 0, "`mod` must not be equal to 0.");
    static_assert(
        mod < (1u << 31),
        "`mod` must be less than (1u << 31) = 2147483648.");

    unsigned val;

public:
    constexpr ModInt() : val(0) {}
    template <typename T>
    constexpr ModInt(T x) : val(safe_mod(x, mod)) {}

    static constexpr ModInt raw(unsigned x) {
        ModInt<mod> ret;
        ret.val = x;
        return ret;
    }

    constexpr unsigned get_val() const {
        return val;
    }

    constexpr ModInt operator+() const {
        return *this;
    }
    constexpr ModInt operator-() const {
        return ModInt<mod>(0u) - *this;
    }

    constexpr ModInt &operator+=(const ModInt &rhs) {
        val += rhs.val;
        if (val >= mod)
            val -= mod;
        return *this;
    }
    constexpr ModInt &operator-=(const ModInt &rhs) {
        if (val < rhs.val)
            val += mod;
        val -= rhs.val;
        return *this;
    }
    constexpr ModInt &operator*=(const ModInt &rhs) {
        val = (unsigned long long)val * rhs.val % mod;
        return *this;
    }
    constexpr ModInt &operator/=(const ModInt &rhs) {
        val = (unsigned long long)val * rhs.inv().val % mod;
        return *this;
    }

    friend constexpr ModInt operator+(const ModInt &lhs, const ModInt &rhs) {
        return ModInt<mod>(lhs) += rhs;
    }
    friend constexpr ModInt operator-(const ModInt &lhs, const ModInt &rhs) {
        return ModInt<mod>(lhs) -= rhs;
    }
    friend constexpr ModInt operator*(const ModInt &lhs, const ModInt &rhs) {
        return ModInt<mod>(lhs) *= rhs;
    }
    friend constexpr ModInt operator/(const ModInt &lhs, const ModInt &rhs) {
        return ModInt<mod>(lhs) /= rhs;
    }

    constexpr ModInt pow(unsigned long long x) const {
        ModInt<mod> ret = ModInt<mod>::raw(1);
        ModInt<mod> self = *this;
        while (x != 0) {
            if (x & 1)
                ret *= self;
            self *= self;
            x >>= 1;
        }
        return ret;
    }
    constexpr ModInt inv() const {
        static_assert(is_prime(mod), "`mod` must be a prime number.");
        assert(val != 0);
        return this->pow(mod - 2);
    }

    friend std::istream &operator>>(std::istream &is, ModInt<mod> &x) {
        is >> x.val;
        // x.val %= mod;
        return is;
    }

    friend std::ostream &operator<<(std::ostream &os, const ModInt<mod> &x) {
        os << x.val;
        return os;
    }

    friend bool operator==(const ModInt &lhs, const ModInt &rhs) {
        return lhs.val == rhs.val;
    }
    
    friend bool operator!=(const ModInt &lhs, const ModInt &rhs) {
        return lhs.val != rhs.val;
    }
};

[[maybe_unused]] constexpr unsigned mod998244353 = 998244353;
[[maybe_unused]] constexpr unsigned mod1000000007 = 1000000007;

#endif
// ===== mod_int.hpp =====
// ===== factorial_table.hpp =====
#ifndef FACTORIAL_TABLE_HPP
#define FACTORIAL_TABLE_HPP

#include <vector>

template <typename T>
class FactorialTable {
    std::vector<T> fac;
    std::vector<T> ifac;
    
public:
    FactorialTable() : fac(1, T(1)), ifac(1, T(1)) {}
    
    FactorialTable(std::size_t n) : fac(n + 1), ifac(n + 1) {
        fac[0] = T(1);
        for (std::size_t i = 1; i <= n; ++i) {
            fac[i] = fac[i - 1] * T(i);
        }
        ifac[n] = T(1) / T(fac[n]);
        for (std::size_t i = n; i > 0; --i) {
            ifac[i - 1] = ifac[i] * T(i);
        }
    }
    
    void resize(std::size_t n) {
        std::size_t old = n_max();
        if (n <= old) {
            return;
        }
        fac.resize(n + 1);
        for (std::size_t i = old + 1; i <= n; ++i) {
            fac[i] = fac[i - 1] * T(i);
        }
        ifac.resize(n + 1);
        ifac[n] = T(1) / T(fac[n]);
        for (std::size_t i = n; i > old; --i) {
            ifac[i - 1] = ifac[i] * T(i);
        }
    }
    
    inline std::size_t n_max() const {
        return fac.size() - 1;
    }
    
    inline T fact(std::size_t n) const {
        assert(n <= n_max());
        return fac[n];
    }
    
    inline T inv_fact(std::size_t n) const {
        assert(n <= n_max());
        return ifac[n];
    }
    
    inline T choose(std::size_t n, std::size_t k) const {
        assert(k <= n_max() && n <= n_max());
        if (k > n) {
            return T(0);
        }
        return fac[n] * ifac[k] * ifac[n - k];
    }
    
    inline T multi_choose(std::size_t n, std::size_t k) const {
        assert(n >= 1 && k + n - 1 <= n_max());
        return choose(k + n - 1, k);
    }
};

#endif
// ===== factorial_table.hpp =====

using Mint = ModInt<mod998244353>;

Mint sum(const FactorialTable<Mint> &table, i32 k, i32 n) {
    return table.fact(n + 1) / Mint::raw(k + 1) * table.inv_fact(n - k);
}

int main() {
    i32 n;
    cin >> n;
    FactorialTable<Mint> table(n + 1);
    REP(k, 1, n + 1) {
        cout << Mint::raw(n - k + 1) * Mint::raw(k) * table.fact(n - k) * sum(table, k, n) << '\n';
    }
}
0