結果
問題 | No.1886 Sum of Slide Max |
ユーザー | ecottea |
提出日時 | 2022-03-25 22:48:58 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 268 ms / 2,000 ms |
コード長 | 7,637 bytes |
コンパイル時間 | 4,055 ms |
コンパイル使用メモリ | 233,776 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-10-14 06:48:46 |
合計ジャッジ時間 | 6,709 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 2 ms
6,820 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 245 ms
6,816 KB |
testcase_06 | AC | 15 ms
6,820 KB |
testcase_07 | AC | 187 ms
6,820 KB |
testcase_08 | AC | 258 ms
6,820 KB |
testcase_09 | AC | 260 ms
6,816 KB |
testcase_10 | AC | 268 ms
6,820 KB |
testcase_11 | AC | 262 ms
6,816 KB |
ソースコード
#ifndef HIDDEN_IN_VISUAL_STUDIO // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include <bits/stdc++.h> using namespace std; // 型名の短縮 using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9) using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>; using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>; using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>; template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); const vi dx4 = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) const vi dy4 = { 0, 1, 0, -1 }; const vi dx8 = { 1, 1, 0, -1, -1, -1, 0, 1 }; // 8 近傍 const vi dy8 = { 0, 1, 1, 1, 0, -1, -1, -1 }; const int INF = 1001001001; const ll INFL = 4004004004004004004LL; const double EPS = 1e-12; // 許容誤差に応じて調整 // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define distance (int)distance #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define repit(it, a) for(auto it = (a).begin(); it != (a).end(); ++it) // イテレータを回す(昇順) #define repitr(it, a) for(auto it = (a).rbegin(); it != (a).rend(); ++it) // イテレータを回す(降順) #define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 // 汎用関数の定義 template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) // 演算子オーバーロード template <class T, class U> inline istream& operator>> (istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; } template <class T> inline istream& operator>> (istream& is, vector<T>& v) { repea(x, v) is >> x; return is; } template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; } template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; } // 手元環境(Visual Studio) #ifdef _MSC_VER #define popcount (int)__popcnt // 全ビット中の 1 の個数 #define popcountll (int)__popcnt64 inline int lsb(unsigned int n) { unsigned long i; _BitScanForward(&i, n); return i; } // 最下位ビットの位置(0-indexed) inline int lsbll(unsigned long long n) { unsigned long i; _BitScanForward64(&i, n); return i; } inline int msb(unsigned int n) { unsigned long i; _BitScanReverse(&i, n); return i; } // 最上位ビットの位置(0-indexed) inline int msbll(unsigned long long n) { unsigned long i; _BitScanReverse64(&i, n); return i; } template <class T> T gcd(T a, T b) { return b ? gcd(b, a % b) : a; } // 提出用(gcc) #else #define popcount (int)__builtin_popcount #define popcountll (int)__builtin_popcountll #define lsb __builtin_ctz #define lsbll __builtin_ctzll #define msb(n) (31 - __builtin_clz(n)) #define msbll(n) (63 - __builtin_clzll(n)) #define gcd __gcd #endif // デバッグ用 #ifdef _MSC_VER #include "debug.hpp" #else #define dump(...) #define dumpel(v) #define input_from_file(f) #define output_to_file(f) #endif #endif // 折りたたみ用 //-----------------AtCoder 専用----------------- #include <atcoder/all> using namespace atcoder; //using mint = modint1000000007; using mint = modint998244353; //using mint = modint; // mint::set_mod(m); istream& operator>> (istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } ostream& operator<< (ostream& os, const mint& x) { os << x.val(); return os; } using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; //---------------------------------------------- //【階乗と二項係数(法が大きな素数,mint利用)】 /* * Factorial_mint(int n_max) : O(n_max) * n_max! まで計算可能として初期化する. * * mint factorial(int n) : O(1) * n! を返す. * * mint factorial_inv(int n) : O(1) * 1 / n! を返す. * * mint inv(int n) : O(1) * 1 / n を返す. * * mint permutation(int n, int r) : O(1) * 順列の数 nPr を返す. * * mint binomial(int n, int r) : O(1) * 二項係数 nCr を返す. * * mint multinomial(vi r) : O(|r|) * 多項係数 nC[r] を返す.(n = Σr) */ struct Factorial_mint { // 階乗,階乗の逆数,逆数の値を保持するテーブル int n_max; vm fac_, fac_inv_, inv_; // n! までの階乗とその逆数を前計算しておく.O(n) Factorial_mint(int n) : n_max(n) { fac_ = vm(n + 1); fac_[0] = 1; repi(i, 1, n) fac_[i] = fac_[i - 1] * i; fac_inv_ = vm(n + 1); fac_inv_[n] = fac_[n].inv(); repir(i, n - 1, 1) fac_inv_[i] = fac_inv_[i + 1] * (i + 1); fac_inv_[0] = 1; inv_ = vm(n + 1); repi(i, 1, n) inv_[i] = fac_[i - 1] * fac_inv_[i]; } // n! を返す.O(1) mint factorial(int n) const { assert(0 <= n && n <= n_max); return fac_[n]; } // 1 / n! を返す.O(1) mint factorial_inv(int n) const { assert(0 <= n && n <= n_max); return fac_inv_[n]; } // 1 / n を返す.O(1) mint inv(int n) const { assert(0 < n && n <= n_max); return inv_[n]; } // 順列の数 nPr を返す.O(1) mint permutation(int n, int r) const { assert(n <= n_max); if (r < 0 || n - r < 0) return 0; return fac_[n] * fac_inv_[n - r]; } // 二項係数 nCr を返す.O(1) mint binomial(int n, int r) const { assert(n <= n_max); if (r < 0 || n - r < 0) return 0; return fac_[n] * fac_inv_[r] * fac_inv_[n - r]; } // 多項係数 nC[r] を返す.O(|r|) mint multinomial(const vi& r) const { int n = accumulate(all(r), 0); assert(n <= n_max); mint res = fac_[n]; repe(ri, r) res *= fac_inv_[ri]; return res; } }; int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); int n; cin >> n; Factorial_mint fm(n + 10); repi(k, 1, n) { mint res = 1; res *= k; res *= fm.factorial(n - k + 1); res *= n - k + 1; res *= fm.factorial(n + 1); res *= fm.inv(k + 1); res *= fm.factorial_inv(n - k + 1); cout << res << endl; } }