結果

問題 No.1888 Odd Insertion
ユーザー tokusakuraitokusakurai
提出日時 2022-03-25 23:28:49
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 5,136 bytes
コンパイル時間 2,047 ms
コンパイル使用メモリ 201,496 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-10-14 07:41:03
合計ジャッジ時間 8,426 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 WA -
testcase_01 AC 2 ms
5,248 KB
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 AC 23 ms
5,248 KB
testcase_07 AC 23 ms
5,248 KB
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 AC 22 ms
5,248 KB
testcase_17 WA -
testcase_18 AC 23 ms
5,248 KB
testcase_19 AC 22 ms
5,248 KB
testcase_20 AC 23 ms
5,248 KB
testcase_21 AC 22 ms
5,248 KB
testcase_22 AC 23 ms
5,248 KB
testcase_23 AC 23 ms
5,248 KB
testcase_24 AC 23 ms
5,248 KB
testcase_25 AC 22 ms
5,248 KB
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 AC 21 ms
5,248 KB
testcase_30 AC 22 ms
5,248 KB
testcase_31 AC 22 ms
5,248 KB
testcase_32 WA -
testcase_33 WA -
testcase_34 WA -
testcase_35 WA -
testcase_36 WA -
testcase_37 WA -
testcase_38 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < n; i++)
#define rep2(i, x, n) for (int i = x; i <= n; i++)
#define rep3(i, x, n) for (int i = x; i >= n; i--)
#define each(e, v) for (auto &e : v)
#define pb push_back
#define eb emplace_back
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;

template <typename T>
bool chmax(T &x, const T &y) {
    return (x < y) ? (x = y, true) : false;
}

template <typename T>
bool chmin(T &x, const T &y) {
    return (x > y) ? (x = y, true) : false;
}

template <typename T>
int flg(T x, int i) {
    return (x >> i) & 1;
}

template <typename T>
void print(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
    if (v.empty()) cout << '\n';
}

template <typename T>
void printn(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}

template <typename T>
int lb(const vector<T> &v, T x) {
    return lower_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
int ub(const vector<T> &v, T x) {
    return upper_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
void rearrange(vector<T> &v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
    int n = v.size();
    vector<int> ret(n);
    iota(begin(ret), end(ret), 0);
    sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
    return ret;
}

template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first + q.first, p.second + q.second);
}

template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first - q.first, p.second - q.second);
}

template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
    S a;
    T b;
    is >> a >> b;
    p = make_pair(a, b);
    return is;
}

template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
    return os << p.first << ' ' << p.second;
}

struct io_setup {
    io_setup() {
        ios_base::sync_with_stdio(false);
        cin.tie(NULL);
        cout << fixed << setprecision(15);
    }
} io_setup;

const int inf = (1 << 30) - 1;
const ll INF = (1LL << 60) - 1;
const int MOD = 1000000007;
// const int MOD = 998244353;

template <typename T>
struct Binary_Indexed_Tree {
    vector<T> bit;
    const int n;

    Binary_Indexed_Tree(const vector<T> &v) : n((int)v.size()) {
        bit.resize(n + 1);
        copy(begin(v), end(v), begin(bit) + 1);
        for (int a = 2; a <= n; a <<= 1) {
            for (int b = a; b <= n; b += a) bit[b] += bit[b - a / 2];
        }
    }

    Binary_Indexed_Tree(int n, const T &x) : n(n) {
        bit.resize(n + 1);
        vector<T> v(n, x);
        copy(begin(v), end(v), begin(bit) + 1);
        for (int a = 2; a <= n; a <<= 1) {
            for (int b = a; b <= n; b += a) bit[b] += bit[b - a / 2];
        }
    }

    void add(int i, const T &x) {
        for (i++; i <= n; i += (i & -i)) bit[i] += x;
    }

    void change(int i, const T &x) { add(i, x - query(i, i + 1)); }

    T sum(int i) const {
        T ret = 0;
        for (; i > 0; i -= (i & -i)) ret += bit[i];
        return ret;
    }

    T query(int l, int r) const { return sum(r) - sum(l); }

    T operator[](int i) const { return query(i, i + 1); }

    int lower_bound(T x) const {
        int ret = 0;
        for (int k = 31 - __builtin_clz(n); k >= 0; k--) {
            if (ret + (1 << k) <= n && bit[ret + (1 << k)] < x) x -= bit[ret += (1 << k)];
        }
        return ret;
    }

    int upper_bound(T x) const {
        int ret = 0;
        for (int k = 31 - __builtin_clz(n); k >= 0; k--) {
            if (ret + (1 << k) <= n && bit[ret + (1 << k)] <= x) x -= bit[ret += (1 << k)];
        }
        return ret;
    }
};

int main() {
    int N;
    cin >> N;

    vector<int> P(N), Q(N);
    rep(i, N) {
        cin >> P[i];
        P[i]--;
        Q[P[i]] = i;
    }

    cout << "No\n";

    // Binary_Indexed_Tree<int> bit(N, 0);
    // vector<int> S(N);
    // rep(i, N) {
    //     S[i] = bit.query(0, Q[i]);
    //     bit.add(Q[i], 1);
    // }

    // vector<pii> ans;

    // for (int i = N - 1; i >= 0;) {
    //     int mi = inf;
    //     int j = 0;
    //     while (i - j > 0 && S[i - j] % 2 == 1) {
    //         chmin(mi, Q[i - j]);
    //         j++;
    //     }
    //     // cout << i << ' ' << j << '\n';
    //     if (Q[i - j] > mi) {
    //         cout << "No\n";
    //         return 0;
    //     }
    //     ans.eb(i - j, S[i - j]);
    //     rep3(k, i, i - j + 1) ans.eb(k, S[k] - 1);
    //     i -= j + 1;
    // }

    // cout << "Yes\n";
    // reverse(all(ans));
    // printn(ans, pii(1, 1));
}
0