結果
問題 | No.1889 K Consecutive Ks (Hard) |
ユーザー | suisen |
提出日時 | 2022-03-26 01:43:45 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
CE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 50,883 bytes |
コンパイル時間 | 2,158 ms |
コンパイル使用メモリ | 213,580 KB |
最終ジャッジ日時 | 2024-11-15 02:14:14 |
合計ジャッジ時間 | 2,678 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
main.cpp: In instantiation of 'void print(const Head&, const Tail& ...) [with Head = atcoder::static_modint<998244353>; Tail = {}]': main.cpp:1524:10: required from here main.cpp:147:15: error: no match for 'operator<<' (operand types are 'std::ostream' {aka 'std::basic_ostream<char>'} and 'const atcoder::static_modint<998244353>') 147 | std::cout << head; | ~~~~~~~~~~^~~~~~~ In file included from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/istream:39, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/sstream:38, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/complex:45, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/ccomplex:39, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/x86_64-pc-linux-gnu/bits/stdc++.h:54, from main.cpp:3: /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/ostream:108:7: note: candidate: 'std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(__ostream_type& (*)(__ostream_type&)) [with _CharT = char; _Traits = std::char_traits<char>; __ostream_type = std::basic_ostream<char>]' 108 | operator<<(__ostream_type& (*__pf)(__ostream_type&)) | ^~~~~~~~ /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/ostream:108:36: note: no known conversion for argument 1 from 'const atcoder::static_modint<998244353>' to 'std::basic_ostream<char>::__ostream_type& (*)(std::basic_ostream<char>::__ostream_type&)' {aka 'std::basic_ostream<char>& (*)(std::basic_ostream<char>&)'} 108 | operator<<(__ostream_type& (*__pf)(__ostream_type&)) | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/ostream:117:7: note: candidate: 'std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_Cha
ソースコード
// #pragma comment(linker, "/stack:200000000") #include <bits/stdc++.h> #include <limits> #include <type_traits> namespace suisen { // ! utility template <typename ...Types> using constraints_t = std::enable_if_t<std::conjunction_v<Types...>, std::nullptr_t>; template <bool cond_v, typename Then, typename OrElse> constexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) { if constexpr (cond_v) { return std::forward<Then>(then); } else { return std::forward<OrElse>(or_else); } } // ! function template <typename ReturnType, typename Callable, typename ...Args> using is_same_as_invoke_result = std::is_same<std::invoke_result_t<Callable, Args...>, ReturnType>; template <typename F, typename T> using is_uni_op = is_same_as_invoke_result<T, F, T>; template <typename F, typename T> using is_bin_op = is_same_as_invoke_result<T, F, T, T>; template <typename Comparator, typename T> using is_comparator = std::is_same<std::invoke_result_t<Comparator, T, T>, bool>; // ! integral template <typename T, typename = constraints_t<std::is_integral<T>>> constexpr int bit_num = std::numeric_limits<std::make_unsigned_t<T>>::digits; template <typename T, unsigned int n> struct is_nbit { static constexpr bool value = bit_num<T> == n; }; template <typename T, unsigned int n> static constexpr bool is_nbit_v = is_nbit<T, n>::value; // ? template <typename T> struct safely_multipliable {}; template <> struct safely_multipliable<int> { using type = long long; }; template <> struct safely_multipliable<long long> { using type = __int128_t; }; template <> struct safely_multipliable<unsigned int> { using type = unsigned long long; }; template <> struct safely_multipliable<unsigned long long> { using type = __uint128_t; }; template <> struct safely_multipliable<float> { using type = float; }; template <> struct safely_multipliable<double> { using type = double; }; template <> struct safely_multipliable<long double> { using type = long double; }; template <typename T> using safely_multipliable_t = typename safely_multipliable<T>::type; } // namespace suisen // ! type aliases using i128 = __int128_t; using u128 = __uint128_t; using ll = long long; using uint = unsigned int; using ull = unsigned long long; template <typename T> using vec = std::vector<T>; template <typename T> using vec2 = vec<vec <T>>; template <typename T> using vec3 = vec<vec2<T>>; template <typename T> using vec4 = vec<vec3<T>>; template <typename T> using pq_greater = std::priority_queue<T, std::vector<T>, std::greater<T>>; template <typename T, typename U> using umap = std::unordered_map<T, U>; // ! macros (capital: internal macro) #define OVERLOAD2(_1,_2,name,...) name #define OVERLOAD3(_1,_2,_3,name,...) name #define OVERLOAD4(_1,_2,_3,_4,name,...) name #define REP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l);i<(r);i+=(s)) #define REP3(i,l,r) REP4(i,l,r,1) #define REP2(i,n) REP3(i,0,n) #define REPINF3(i,l,s) for(std::remove_reference_t<std::remove_const_t<decltype(l)>>i=(l);;i+=(s)) #define REPINF2(i,l) REPINF3(i,l,1) #define REPINF1(i) REPINF2(i,0) #define RREP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l)+fld((r)-(l)-1,s)*(s);i>=(l);i-=(s)) #define RREP3(i,l,r) RREP4(i,l,r,1) #define RREP2(i,n) RREP3(i,0,n) #define rep(...) OVERLOAD4(__VA_ARGS__, REP4 , REP3 , REP2 )(__VA_ARGS__) #define rrep(...) OVERLOAD4(__VA_ARGS__, RREP4 , RREP3 , RREP2 )(__VA_ARGS__) #define repinf(...) OVERLOAD3(__VA_ARGS__, REPINF3, REPINF2, REPINF1)(__VA_ARGS__) #define CAT_I(a, b) a##b #define CAT(a, b) CAT_I(a, b) #define UNIQVAR(tag) CAT(tag, __LINE__) #define loop(n) for (std::remove_reference_t<std::remove_const_t<decltype(n)>> UNIQVAR(loop_variable) = n; UNIQVAR(loop_variable) --> 0;) #define all(iterable) (iterable).begin(), (iterable).end() #define input(type, ...) type __VA_ARGS__; read(__VA_ARGS__) // ! I/O utilities // pair template <typename T, typename U> std::ostream& operator<<(std::ostream& out, const std::pair<T, U> &a) { return out << a.first << ' ' << a.second; } // tuple template <unsigned int N = 0, typename ...Args> std::ostream& operator<<(std::ostream& out, const std::tuple<Args...> &a) { if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) { return out; } else { out << std::get<N>(a); if constexpr (N + 1 < std::tuple_size_v<std::tuple<Args...>>) { out << ' '; } return operator<<<N + 1>(out, a); } } // vector template <typename T> std::ostream& operator<<(std::ostream& out, const std::vector<T> &a) { for (auto it = a.begin(); it != a.end();) { out << *it; if (++it != a.end()) out << ' '; } return out; } // array template <typename T, size_t N> std::ostream& operator<<(std::ostream& out, const std::array<T, N> &a) { for (auto it = a.begin(); it != a.end();) { out << *it; if (++it != a.end()) out << ' '; } return out; } inline void print() { std::cout << '\n'; } template <typename Head, typename... Tail> inline void print(const Head &head, const Tail &...tails) { std::cout << head; if (sizeof...(tails)) std::cout << ' '; print(tails...); } template <typename Iterable> auto print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") -> decltype(std::cout << *v.begin(), void()) { for (auto it = v.begin(); it != v.end();) { std::cout << *it; if (++it != v.end()) std::cout << sep; } std::cout << end; } // pair template <typename T, typename U> std::istream& operator>>(std::istream& in, std::pair<T, U> &a) { return in >> a.first >> a.second; } // tuple template <unsigned int N = 0, typename ...Args> std::istream& operator>>(std::istream& in, std::tuple<Args...> &a) { if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) { return in; } else { return operator>><N + 1>(in >> std::get<N>(a), a); } } // vector template <typename T> std::istream& operator>>(std::istream& in, std::vector<T> &a) { for (auto it = a.begin(); it != a.end(); ++it) in >> *it; return in; } // array template <typename T, size_t N> std::istream& operator>>(std::istream& in, std::array<T, N> &a) { for (auto it = a.begin(); it != a.end(); ++it) in >> *it; return in; } template <typename ...Args> void read(Args &...args) { ( std::cin >> ... >> args ); } // ! integral utilities // Returns pow(-1, n) template <typename T> constexpr inline int pow_m1(T n) { return -(n & 1) | 1; } // Returns pow(-1, n) template <> constexpr inline int pow_m1<bool>(bool n) { return -int(n) | 1; } // Returns floor(x / y) template <typename T> constexpr inline T fld(const T x, const T y) { return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y; } template <typename T> constexpr inline T cld(const T x, const T y) { return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y; } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr> constexpr inline int popcount(const T x) { return __builtin_popcount(x); } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr> constexpr inline int popcount(const T x) { return __builtin_popcount(x); } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr> constexpr inline int popcount(const T x) { return __builtin_popcountll(x); } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clzll(x) : suisen::bit_num<T>; } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctzll(x) : suisen::bit_num<T>; } template <typename T> constexpr inline int floor_log2(const T x) { return suisen::bit_num<T> - 1 - count_lz(x); } template <typename T> constexpr inline int ceil_log2(const T x) { return floor_log2(x) + ((x & -x) != x); } template <typename T> constexpr inline int kth_bit(const T x, const unsigned int k) { return (x >> k) & 1; } template <typename T> constexpr inline int parity(const T x) { return popcount(x) & 1; } struct all_subset { struct all_subset_iter { const int s; int t; constexpr all_subset_iter(int s) : s(s), t(s + 1) {} constexpr auto operator*() const { return t; } constexpr auto operator++() {} constexpr auto operator!=(std::nullptr_t) { return t ? (--t &= s, true) : false; } }; int s; constexpr all_subset(int s) : s(s) {} constexpr auto begin() { return all_subset_iter(s); } constexpr auto end() { return nullptr; } }; // ! container template <typename T, typename Comparator, suisen::constraints_t<suisen::is_comparator<Comparator, T>> = nullptr> auto priqueue_comp(const Comparator comparator) { return std::priority_queue<T, std::vector<T>, Comparator>(comparator); } template <typename Iterable> auto isize(const Iterable &iterable) -> decltype(int(iterable.size())) { return iterable.size(); } template <typename T, typename Gen, suisen::constraints_t<suisen::is_same_as_invoke_result<T, Gen, int>> = nullptr> auto generate_vector(int n, Gen generator) { std::vector<T> v(n); for (int i = 0; i < n; ++i) v[i] = generator(i); return v; } template <typename T> auto generate_range_vector(T l, T r) { return generate_vector(r - l, [l](int i) { return l + i; }); } template <typename T> auto generate_range_vector(T n) { return generate_range_vector(0, n); } template <typename T> void sort_unique_erase(std::vector<T> &a) { std::sort(a.begin(), a.end()); a.erase(std::unique(a.begin(), a.end()), a.end()); } template <typename InputIterator, typename BiConsumer> auto foreach_adjacent_values(InputIterator first, InputIterator last, BiConsumer f) -> decltype(f(*first++, *last), void()) { if (first != last) for (auto itr = first, itl = itr++; itr != last; itl = itr++) f(*itl, *itr); } template <typename Container, typename BiConsumer> auto foreach_adjacent_values(Container c, BiConsumer f) -> decltype(c.begin(), c.end(), void()){ foreach_adjacent_values(c.begin(), c.end(), f); } // ! other utilities // x <- min(x, y). returns true iff `x` has chenged. template <typename T> inline bool chmin(T &x, const T &y) { if (y >= x) return false; x = y; return true; } // x <- max(x, y). returns true iff `x` has chenged. template <typename T> inline bool chmax(T &x, const T &y) { if (y <= x) return false; x = y; return true; } namespace suisen {} using namespace suisen; using namespace std; struct io_setup { io_setup(int precision = 20) { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(precision); } } io_setup_ {}; // ! code from here #include <cassert> #include <numeric> #ifdef _MSC_VER #include <intrin.h> #endif #include <utility> #ifdef _MSC_VER #endif namespace atcoder { namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } // Fast modular multiplication by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m < 2^31` explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); // @param n `n < 2^32` // @param m `1 <= m < 2^32` // @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64) unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m, unsigned long long a, unsigned long long b) { unsigned long long ans = 0; while (true) { if (a >= m) { ans += n * (n - 1) / 2 * (a / m); a %= m; } if (b >= m) { ans += n * (b / m); b %= m; } unsigned long long y_max = a * n + b; if (y_max < m) break; // y_max < m * (n + 1) // floor(y_max / m) <= n n = (unsigned long long)(y_max / m); b = (unsigned long long)(y_max % m); std::swap(m, a); } return ans; } } // namespace internal } // namespace atcoder namespace atcoder { namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal } // namespace atcoder namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template <int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> internal::barrett dynamic_modint<id>::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public std::false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {}; template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal } // namespace atcoder using mint = atcoder::modint998244353; std::istream& operator>>(std::istream& in, mint &a) { long long e; in >> e; a = e; return in; } std::ostream& operator<<(std::ostream& out, const mint &a) { out << a.val(); return out; } #include <algorithm> #include <array> #include <vector> #ifdef _MSC_VER #endif namespace atcoder { namespace internal { // @param n `0 <= n` // @return minimum non-negative `x` s.t. `n <= 2**x` int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` constexpr int bsf_constexpr(unsigned int n) { int x = 0; while (!(n & (1 << x))) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } } // namespace internal } // namespace atcoder namespace atcoder { namespace internal { template <class mint, int g = internal::primitive_root<mint::mod()>, internal::is_static_modint_t<mint>* = nullptr> struct fft_info { static constexpr int rank2 = bsf_constexpr(mint::mod() - 1); std::array<mint, rank2 + 1> root; // root[i]^(2^i) == 1 std::array<mint, rank2 + 1> iroot; // root[i] * iroot[i] == 1 std::array<mint, std::max(0, rank2 - 2 + 1)> rate2; std::array<mint, std::max(0, rank2 - 2 + 1)> irate2; std::array<mint, std::max(0, rank2 - 3 + 1)> rate3; std::array<mint, std::max(0, rank2 - 3 + 1)> irate3; fft_info() { root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2); iroot[rank2] = root[rank2].inv(); for (int i = rank2 - 1; i >= 0; i--) { root[i] = root[i + 1] * root[i + 1]; iroot[i] = iroot[i + 1] * iroot[i + 1]; } { mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 2; i++) { rate2[i] = root[i + 2] * prod; irate2[i] = iroot[i + 2] * iprod; prod *= iroot[i + 2]; iprod *= root[i + 2]; } } { mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 3; i++) { rate3[i] = root[i + 3] * prod; irate3[i] = iroot[i + 3] * iprod; prod *= iroot[i + 3]; iprod *= root[i + 3]; } } } }; template <class mint, internal::is_static_modint_t<mint>* = nullptr> void butterfly(std::vector<mint>& a) { int n = int(a.size()); int h = internal::ceil_pow2(n); static const fft_info<mint> info; int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed while (len < h) { if (h - len == 1) { int p = 1 << (h - len - 1); mint rot = 1; for (int s = 0; s < (1 << len); s++) { int offset = s << (h - len); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p] * rot; a[i + offset] = l + r; a[i + offset + p] = l - r; } if (s + 1 != (1 << len)) rot *= info.rate2[bsf(~(unsigned int)(s))]; } len++; } else { // 4-base int p = 1 << (h - len - 2); mint rot = 1, imag = info.root[2]; for (int s = 0; s < (1 << len); s++) { mint rot2 = rot * rot; mint rot3 = rot2 * rot; int offset = s << (h - len); for (int i = 0; i < p; i++) { auto mod2 = 1ULL * mint::mod() * mint::mod(); auto a0 = 1ULL * a[i + offset].val(); auto a1 = 1ULL * a[i + offset + p].val() * rot.val(); auto a2 = 1ULL * a[i + offset + 2 * p].val() * rot2.val(); auto a3 = 1ULL * a[i + offset + 3 * p].val() * rot3.val(); auto a1na3imag = 1ULL * mint(a1 + mod2 - a3).val() * imag.val(); auto na2 = mod2 - a2; a[i + offset] = a0 + a2 + a1 + a3; a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3)); a[i + offset + 2 * p] = a0 + na2 + a1na3imag; a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag); } if (s + 1 != (1 << len)) rot *= info.rate3[bsf(~(unsigned int)(s))]; } len += 2; } } } template <class mint, internal::is_static_modint_t<mint>* = nullptr> void butterfly_inv(std::vector<mint>& a) { int n = int(a.size()); int h = internal::ceil_pow2(n); static const fft_info<mint> info; int len = h; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed while (len) { if (len == 1) { int p = 1 << (h - len); mint irot = 1; for (int s = 0; s < (1 << (len - 1)); s++) { int offset = s << (h - len + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p]; a[i + offset] = l + r; a[i + offset + p] = (unsigned long long)(mint::mod() + l.val() - r.val()) * irot.val(); ; } if (s + 1 != (1 << (len - 1))) irot *= info.irate2[bsf(~(unsigned int)(s))]; } len--; } else { // 4-base int p = 1 << (h - len); mint irot = 1, iimag = info.iroot[2]; for (int s = 0; s < (1 << (len - 2)); s++) { mint irot2 = irot * irot; mint irot3 = irot2 * irot; int offset = s << (h - len + 2); for (int i = 0; i < p; i++) { auto a0 = 1ULL * a[i + offset + 0 * p].val(); auto a1 = 1ULL * a[i + offset + 1 * p].val(); auto a2 = 1ULL * a[i + offset + 2 * p].val(); auto a3 = 1ULL * a[i + offset + 3 * p].val(); auto a2na3iimag = 1ULL * mint((mint::mod() + a2 - a3) * iimag.val()).val(); a[i + offset] = a0 + a1 + a2 + a3; a[i + offset + 1 * p] = (a0 + (mint::mod() - a1) + a2na3iimag) * irot.val(); a[i + offset + 2 * p] = (a0 + a1 + (mint::mod() - a2) + (mint::mod() - a3)) * irot2.val(); a[i + offset + 3 * p] = (a0 + (mint::mod() - a1) + (mint::mod() - a2na3iimag)) * irot3.val(); } if (s + 1 != (1 << (len - 2))) irot *= info.irate3[bsf(~(unsigned int)(s))]; } len -= 2; } } } template <class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution_naive(const std::vector<mint>& a, const std::vector<mint>& b) { int n = int(a.size()), m = int(b.size()); std::vector<mint> ans(n + m - 1); if (n < m) { for (int j = 0; j < m; j++) { for (int i = 0; i < n; i++) { ans[i + j] += a[i] * b[j]; } } } else { for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { ans[i + j] += a[i] * b[j]; } } } return ans; } template <class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution_fft(std::vector<mint> a, std::vector<mint> b) { int n = int(a.size()), m = int(b.size()); int z = 1 << internal::ceil_pow2(n + m - 1); a.resize(z); internal::butterfly(a); b.resize(z); internal::butterfly(b); for (int i = 0; i < z; i++) { a[i] *= b[i]; } internal::butterfly_inv(a); a.resize(n + m - 1); mint iz = mint(z).inv(); for (int i = 0; i < n + m - 1; i++) a[i] *= iz; return a; } } // namespace internal template <class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution(std::vector<mint>&& a, std::vector<mint>&& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; if (std::min(n, m) <= 60) return convolution_naive(a, b); return internal::convolution_fft(a, b); } template <class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution(const std::vector<mint>& a, const std::vector<mint>& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; if (std::min(n, m) <= 60) return convolution_naive(a, b); return internal::convolution_fft(a, b); } template <unsigned int mod = 998244353, class T, std::enable_if_t<internal::is_integral<T>::value>* = nullptr> std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; using mint = static_modint<mod>; std::vector<mint> a2(n), b2(m); for (int i = 0; i < n; i++) { a2[i] = mint(a[i]); } for (int i = 0; i < m; i++) { b2[i] = mint(b[i]); } auto c2 = convolution(move(a2), move(b2)); std::vector<T> c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { c[i] = c2[i].val(); } return c; } std::vector<long long> convolution_ll(const std::vector<long long>& a, const std::vector<long long>& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; static constexpr unsigned long long MOD1 = 754974721; // 2^24 static constexpr unsigned long long MOD2 = 167772161; // 2^25 static constexpr unsigned long long MOD3 = 469762049; // 2^26 static constexpr unsigned long long M2M3 = MOD2 * MOD3; static constexpr unsigned long long M1M3 = MOD1 * MOD3; static constexpr unsigned long long M1M2 = MOD1 * MOD2; static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3; static constexpr unsigned long long i1 = internal::inv_gcd(MOD2 * MOD3, MOD1).second; static constexpr unsigned long long i2 = internal::inv_gcd(MOD1 * MOD3, MOD2).second; static constexpr unsigned long long i3 = internal::inv_gcd(MOD1 * MOD2, MOD3).second; auto c1 = convolution<MOD1>(a, b); auto c2 = convolution<MOD2>(a, b); auto c3 = convolution<MOD3>(a, b); std::vector<long long> c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { unsigned long long x = 0; x += (c1[i] * i1) % MOD1 * M2M3; x += (c2[i] * i2) % MOD2 * M1M3; x += (c3[i] * i3) % MOD3 * M1M2; // B = 2^63, -B <= x, r(real value) < B // (x, x - M, x - 2M, or x - 3M) = r (mod 2B) // r = c1[i] (mod MOD1) // focus on MOD1 // r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B) // r = x, // x - M' + (0 or 2B), // x - 2M' + (0, 2B or 4B), // x - 3M' + (0, 2B, 4B or 6B) (without mod!) // (r - x) = 0, (0) // - M' + (0 or 2B), (1) // -2M' + (0 or 2B or 4B), (2) // -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1) // we checked that // ((1) mod MOD1) mod 5 = 2 // ((2) mod MOD1) mod 5 = 3 // ((3) mod MOD1) mod 5 = 4 long long diff = c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1)); if (diff < 0) diff += MOD1; static constexpr unsigned long long offset[5] = { 0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3}; x -= offset[diff % 5]; c[i] = x; } return c; } } // namespace atcoder #include <iostream> namespace suisen { template <typename mint> class inv_mods { public: inv_mods() {} inv_mods(int n) { ensure(n); } const mint& operator[](int i) const { ensure(i); return invs[i]; } static void ensure(int n) { int sz = invs.size(); if (sz < 2) invs = {0, 1}, sz = 2; if (sz < n + 1) { invs.resize(n + 1); for (int i = sz; i <= n; ++i) invs[i] = mint(mod - mod / i) * invs[mod % i]; } } private: static std::vector<mint> invs; static constexpr int mod = mint::mod(); }; template <typename mint> std::vector<mint> inv_mods<mint>::invs{}; } namespace suisen { template <typename mint> using convolution_t = std::vector<mint> (*)(const std::vector<mint> &, const std::vector<mint> &); template <typename mint> class FPS : public std::vector<mint> { public: using std::vector<mint>::vector; FPS(const std::initializer_list<mint> l) : std::vector<mint>::vector(l) {} static void set_multiplication(convolution_t<mint> multiplication) { FPS<mint>::mult = multiplication; } inline FPS& operator=(const std::vector<mint> &&f) & noexcept { std::vector<mint>::operator=(std::move(f)); return *this; } inline FPS& operator=(const std::vector<mint> &f) & { std::vector<mint>::operator=(f); return *this; } inline const mint operator[](int n) const noexcept { return n <= deg() ? unsafe_get(n) : 0; } inline mint& operator[](int n) noexcept { ensure_deg(n); return unsafe_get(n); } inline int size() const noexcept { return std::vector<mint>::size(); } inline int deg() const noexcept { return size() - 1; } inline int normalize() { while (this->size() and this->back() == 0) this->pop_back(); return deg(); } inline FPS& pre_inplace(int max_deg) noexcept { if (deg() > max_deg) this->resize(std::max(0, max_deg + 1)); return *this; } inline FPS pre(int max_deg) const noexcept { return FPS(*this).pre_inplace(max_deg); } inline FPS operator+() const { return FPS(*this); } FPS operator-() const { FPS f(*this); for (auto &e : f) e = mint::mod() - e; return f; } inline FPS& operator++() { ++(*this)[0]; return *this; } inline FPS& operator--() { --(*this)[0]; return *this; } inline FPS& operator+=(const mint x) { (*this)[0] += x; return *this; } inline FPS& operator-=(const mint x) { (*this)[0] -= x; return *this; } FPS& operator+=(const FPS &g) { ensure_deg(g.deg()); for (int i = 0; i <= g.deg(); ++i) unsafe_get(i) += g.unsafe_get(i); return *this; } FPS& operator-=(const FPS &g) { ensure_deg(g.deg()); for (int i = 0; i <= g.deg(); ++i) unsafe_get(i) -= g.unsafe_get(i); return *this; } inline FPS& operator*=(const FPS &g) { return *this = FPS<mint>::mult(*this, g); } inline FPS& operator*=( FPS &&g) { return *this = FPS<mint>::mult(*this, g); } inline FPS& operator*=(const mint x) { for (auto &e : *this) e *= x; return *this; } FPS& operator/=(FPS &&g) { const int fd = normalize(), gd = g.normalize(); assert(gd >= 0); if (fd < gd) { this->clear(); return *this; } if (gd == 0) return *this *= g.unsafe_get(0).inv(); static constexpr int THRESHOLD_NAIVE_POLY_QUOTIENT = 256; if (gd <= THRESHOLD_NAIVE_POLY_QUOTIENT) { *this = std::move(naive_div_inplace(std::move(g), gd).first); return *this; } std::reverse(this->begin(), this->end()), std::reverse(g.begin(), g.end()); const int k = fd - gd; *this *= g.inv_inplace(k), this->resize(k + 1); std::reverse(this->begin(), this->end()); return *this; } FPS& operator%=(FPS &&g) { int fd = normalize(), gd = g.normalize(); assert(gd >= 0); if (fd < gd) return *this; if (gd == 0) { this->clear(); return *this; } static constexpr int THRESHOLD_NAIVE_REMAINDER = 256; if (gd <= THRESHOLD_NAIVE_REMAINDER) return naive_div_inplace(std::move(g), gd).second; *this -= g * (*this / g); return pre_inplace(gd - 1); } inline FPS& operator/=(const FPS &g) { return *this /= FPS(g); } inline FPS& operator%=(const FPS &g) { return *this %= FPS(g); } FPS& operator<<=(const int shamt) { this->insert(this->begin(), shamt, 0); return *this; } FPS& operator>>=(const int shamt) { if (shamt > size()) this->clear(); else this->erase(this->begin(), this->begin() + shamt); return *this; } inline FPS operator+(FPS &&g) const { return FPS(*this) += std::move(g); } inline FPS operator-(FPS &&g) const { return FPS(*this) -= std::move(g); } inline FPS operator*(FPS &&g) const { return FPS(*this) *= std::move(g); } inline FPS operator/(FPS &&g) const { return FPS(*this) /= std::move(g); } inline FPS operator%(FPS &&g) const { return FPS(*this) %= std::move(g); } inline FPS operator+(const FPS &g) const { return FPS(*this) += g; } inline FPS operator+(const mint x) const { return FPS(*this) += x; } inline FPS operator-(const FPS &g) const { return FPS(*this) -= g; } inline FPS operator-(const mint x) const { return FPS(*this) -= x; } inline FPS operator*(const FPS &g) const { return FPS(*this) *= g; } inline FPS operator*(const mint x) const { return FPS(*this) *= x; } inline FPS operator/(const FPS &g) const { return FPS(*this) /= g; } inline FPS operator%(const FPS &g) const { return FPS(*this) %= g; } inline friend FPS operator*(const mint x, const FPS &f) { return f * x; } inline friend FPS operator*(const mint x, FPS &&f) { return f *= x; } inline FPS operator<<(const int shamt) { return FPS(*this) <<= shamt; } inline FPS operator>>(const int shamt) { return FPS(*this) >>= shamt; } friend bool operator==(const FPS &f, const FPS &g) { int n = f.size(), m = g.size(); if (n < m) return g == f; for (int i = 0; i < m; ++i) if (f.unsafe_get(i) != g.unsafe_get(i)) return false; for (int i = m; i < n; ++i) if (f.unsafe_get(i) != 0) return false; return true; } FPS& diff_inplace() { if (this->size() == 0) return *this; for (int i = 1; i <= deg(); ++i) unsafe_get(i - 1) = unsafe_get(i) * i; this->pop_back(); return *this; } FPS& intg_inplace() { int d = deg(); ensure_deg(d + 1); for (int i = d; i >= 0; --i) unsafe_get(i + 1) = unsafe_get(i) * invs[i + 1]; unsafe_get(0) = 0; return *this; } FPS& inv_inplace(const int max_deg) { FPS res { unsafe_get(0).inv() }; for (int k = 1; k <= max_deg; k *= 2) { FPS tmp(this->pre(k * 2) * (res * res)); res *= 2, res -= tmp.pre_inplace(2 * k); } return *this = std::move(res), pre_inplace(max_deg); } FPS& log_inplace(const int max_deg) { FPS f_inv = inv(max_deg); diff_inplace(), *this *= f_inv, pre_inplace(max_deg - 1), intg_inplace(); return *this; } FPS& exp_inplace(const int max_deg) { FPS res {1}; for (int k = 1; k <= max_deg; k *= 2) res *= ++(pre(k * 2) - res.log(k * 2)), res.pre_inplace(k * 2); return *this = std::move(res), pre_inplace(max_deg); } FPS& pow_inplace(const long long k, const int max_deg) { int tlz = 0; while (tlz <= deg() and unsafe_get(tlz) == 0) ++tlz; if (tlz * k > max_deg) { this->clear(); return *this; } *this >>= tlz; mint base = (*this)[0]; *this *= base.inv(), log_inplace(max_deg), *this *= k, exp_inplace(max_deg), *this *= base.pow(k); return *this <<= tlz * k, pre_inplace(max_deg); } inline FPS diff() const { return FPS(*this).diff_inplace(); } inline FPS intg() const { return FPS(*this).intg_inplace(); } inline FPS inv(const int max_deg) const { return FPS(*this).inv_inplace(max_deg); } inline FPS log(const int max_deg) const { return FPS(*this).log_inplace(max_deg); } inline FPS exp(const int max_deg) const { return FPS(*this).exp_inplace(max_deg); } inline FPS pow(const long long k, const int max_deg) const { return FPS(*this).pow_inplace(k, max_deg); } private: static inv_mods<mint> invs; static convolution_t<mint> mult; inline void ensure_deg(int d) { if (deg() < d) this->resize(d + 1, 0); } inline const mint& unsafe_get(int i) const { return std::vector<mint>::operator[](i); } inline mint& unsafe_get(int i) { return std::vector<mint>::operator[](i); } std::pair<FPS, FPS&> naive_div_inplace(FPS &&g, const int gd) { const int k = deg() - gd; mint head_inv = g.unsafe_get(gd).inv(); FPS q(k + 1); for (int i = k; i >= 0; --i) { mint div = this->unsafe_get(i + gd) * head_inv; q.unsafe_get(i) = div; for (int j = 0; j <= gd; ++j) this->unsafe_get(i + j) -= div * g.unsafe_get(j); } return {q, pre_inplace(gd - 1)}; } }; template <typename mint> convolution_t<mint> FPS<mint>::mult = [](const auto &, const auto &) { std::cerr << "convolution function is not available." << std::endl; assert(false); return std::vector<mint>{}; }; } // namespace suisen template <typename mint> auto sqrt(suisen::FPS<mint> a) -> decltype(mint::mod(), suisen::FPS<mint>{}) { assert(false); } template <typename mint> auto log(suisen::FPS<mint> a) -> decltype(mint::mod(), suisen::FPS<mint>{}) { return a.log(a.deg()); } template <typename mint> auto exp(suisen::FPS<mint> a) -> decltype(mint::mod(), mint()) { return a.exp(a.deg()); } template <typename mint, typename T> auto pow(suisen::FPS<mint> a, T b) -> decltype(mint::mod(), mint()) { return a.pow(b, a.deg()); } template <typename mint> auto inv(suisen::FPS<mint> a) -> decltype(mint::mod(), suisen::FPS<mint>{}) { return a.inv(a.deg()); } int main() { suisen::FPS<mint>::set_multiplication([](const auto &a, const auto &b) { return atcoder::convolution(a, b); }); input(int, n, m); FPS<mint> f(n + 1); rep(v, 2, m + 1) { rep(j, n / v + 1) { --f[j * v]; } } rrep(i, n) f[i + 1] -= f[i]; f[0] = 0; print(mint(m).pow(n) - (FPS<mint>{ 1 } - f).inv(n + 1)[n]); return 0; }