結果
| 問題 |
No.1889 K Consecutive Ks (Hard)
|
| コンテスト | |
| ユーザー |
miscalc
|
| 提出日時 | 2022-04-01 01:39:11 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 282 ms / 6,000 ms |
| コード長 | 4,928 bytes |
| コンパイル時間 | 4,408 ms |
| コンパイル使用メモリ | 264,712 KB |
| 最終ジャッジ日時 | 2025-01-28 13:33:02 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 22 |
ソースコード
#include<bits/stdc++.h>
using namespace std;
#include<atcoder/all>
using namespace atcoder;
#define rep2(i, m, n) for (int i = (m); i < (n); ++i)
#define rep(i, n) rep2(i, 0, n)
#define drep2(i, m, n) for (int i = (m)-1; i >= (n); --i)
#define drep(i, n) drep2(i, n, 0)
// https://opt-cp.com/fps-implementation/
template<typename T>
struct FormalPowerSeries : vector<T> {
using vector<T>::vector;
using vector<T>::operator=;
using F = FormalPowerSeries;
F operator-() const {
F res(*this);
for (auto &e : res) e = -e;
return res;
}
F &operator*=(const T &g) {
for (auto &e : *this) e *= g;
return *this;
}
F &operator/=(const T &g) {
assert(g != T(0));
*this *= g.inv();
return *this;
}
F &operator+=(const F &g) {
int n = (*this).size(), m = g.size();
(*this).resize(max(n, m));
rep(i, m) (*this)[i] += g[i];
return *this;
}
F &operator-=(const F &g) {
int n = (*this).size(), m = g.size();
(*this).resize(max(n, m));
rep(i, m) (*this)[i] -= g[i];
return *this;
}
F &operator<<=(int d) {
(*this).insert((*this).begin(), d, 0);
return *this;
}
F &operator>>=(int d) {
int n = (*this).size();
(*this).erase((*this).begin(), (*this).begin() + min(n, d));
return *this;
}
F inv(int d = -1) const {
int n = (*this).size();
assert(n != 0 && (*this)[0] != 0);
if (d == -1) d = n;
assert(d > 0);
F res{(*this)[0].inv()};
while (res.size() < d) {
int m = size(res);
F f(begin(*this), begin(*this) + min(n, 2*m));
F r(res);
f.resize(2*m), internal::butterfly(f);
r.resize(2*m), internal::butterfly(r);
rep(i, 2*m) f[i] *= r[i];
internal::butterfly_inv(f);
f.erase(f.begin(), f.begin() + m);
f.resize(2*m), internal::butterfly(f);
rep(i, 2*m) f[i] *= r[i];
internal::butterfly_inv(f);
T iz = T(2*m).inv(); iz *= -iz;
for (auto &e : f) e *= iz;
res.insert(res.end(), f.begin(), f.begin() + m);
}
return {res.begin(), res.begin() + d};
}
F &operator*=(const F &g) {
*this = convolution(*this, g);
return *this;
}
F &operator/=(const F &g) {
int n = (*this).size(), m = g.size();
*this = convolution(*this, g.inv(max(n, m)));
(*this).resize(n);
return *this;
}
F operator*(const T &g) const { return F(*this) *= g; }
F operator/(const T &g) const { return F(*this) /= g; }
F operator+(const F &g) const { return F(*this) += g; }
F operator-(const F &g) const { return F(*this) -= g; }
F operator*(const F &g) const { return F(*this) *= g; }
F operator/(const F &g) const { return F(*this) /= g; }
F operator<<(const int d) const { return F(*this) <<= d; }
F operator>>(const int d) const { return F(*this) >>= d; }
void multiply_naive(const F &g) {
int n = size(*this), m = size(g);
(*this).resize(n+m-1);
drep(i, n+m-1) {
(*this)[i] *= g[0];
rep2(j, 1, min(i+1, m)) (*this)[i] += (*this)[i-j] * g[j];
}
}
void divide_naive(const F &g) {
assert(g[0] != T(0));
T ig0 = g[0].inv();
int n = size(*this), m = size(g);
rep(i, n) {
rep2(j, 1, min(i+1, m)) (*this)[i] -= (*this)[i-j] * g[j];
(*this)[i] *= ig0;
}
}
void multiply(vector<pair<int, T>> g) { // sparse
int n = (*this).size();
auto [d, c] = g.front();
if (d == 0) g.erase(g.begin());
else c = 0;
drep(i, n) {
(*this)[i] *= c;
for (auto &[j, b] : g) {
if (j > i) break;
(*this)[i] += (*this)[i-j] * b;
}
}
}
void divide(vector<pair<int, T>> g) { // sparse, required: "g[0] == (0, c)" and "c != 0"
int n = (*this).size();
auto [d, c] = g.front();
assert(d == 0 && c != T(0));
T ic = c.inv();
g.erase(g.begin());
rep(i, n) {
for (auto &[j, b] : g) {
if (j > i) break;
(*this)[i] -= (*this)[i-j] * b;
}
(*this)[i] *= ic;
}
}
void multiply(const int d, const T c) { // multiply (1 + cz^d)
int n = (*this).size();
drep(i, n-d) (*this)[i+d] += (*this)[i] * c;
}
void divide(const int d, const T c) { // divide by (1 + cz^d)
int n = (*this).size();
rep(i, n-d) (*this)[i+d] -= (*this)[i] * c;
}
T eval(const T &a) {
T x(1), res(0);
for (auto e : *this) res += e * x, x *= a;
return res;
}
};
using mint = modint998244353;
using fps = FormalPowerSeries<mint>;
using sfps = vector<pair<int, mint>>;
int main()
{
int N, M;
cin >> N >> M;
fps P(N + 1, 0);
for (int i = 1; i <= M; i++)
{
for (int k = 1; k * i <= N; k++)
{
P.at(k * i)++;
}
}
fps Q(N + 1);
for (int i = 0; i <= N; i++)
{
Q.at(i) = mint(M).pow(i);
}
fps R(N + 1);
R.at(0) = 1;
for (int i = 1; i <= N; i++)
{
R.at(i) = (M - 1) * mint(M).pow(i - 1);
}
fps G = Q / (fps(1, 1) + P * R);
mint ans = Q.at(N) - G.at(N);
cout << ans.val() << endl;
}
miscalc