結果
| 問題 |
No.8092 3-2-SAT
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2022-04-01 23:05:39 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 9,528 bytes |
| コンパイル時間 | 10,496 ms |
| コンパイル使用メモリ | 290,092 KB |
| 最終ジャッジ日時 | 2025-01-28 14:21:57 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 13 WA * 5 RE * 1 TLE * 1 |
ソースコード
#pragma GCC optimize("O3")
#include <bits/stdc++.h>
// clang-format off
using namespace std;
using ll = long long int;
#define all(v) (v).begin(),(v).end()
#define repeat(cnt,l) for(typename remove_const<typename remove_reference<decltype(l)>::type>::type cnt={};(cnt)<(l);++(cnt))
#define rrepeat(cnt,l) for(auto cnt=(l)-1;0<=(cnt);--(cnt))
#define iterate(cnt,b,e) for(auto cnt=(b);(cnt)!=(e);++(cnt))
#define upto(cnt,b,e,step) for(auto cnt=(b);(cnt)<=(e);(cnt)+=(step))
#define downto(cnt,b,e,step) for(auto cnt=(b);(e)<=(cnt);(cnt)-=(step))
const long long MD = 998244353; const long double PI = 3.1415926535897932384626433832795L;
template<typename T1, typename T2> inline ostream& operator <<(ostream &o, const pair<T1, T2> p) { o << '(' << p.first << ':' << p.second << ')'; return o; }
template<typename T> inline T& chmax(T& to, const T& val) { return to = max(to, val); }
template<typename T> inline T& chmin(T& to, const T& val) { return to = min(to, val); }
void bye(string s, int code = 0) { cout << s << endl; exit(code); }
mt19937_64 randdev(8901016);
template<typename T, typename Random = decltype(randdev), typename enable_if<is_integral<T>::value>::type* = nullptr>
inline T rand(T l, T h, Random& rand = randdev) { return uniform_int_distribution<T>(l, h)(rand); }
template<typename T, typename Random = decltype(randdev), typename enable_if<is_floating_point<T>::value>::type* = nullptr>
inline T rand(T l, T h, Random& rand = randdev) { return uniform_real_distribution<T>(l, h)(rand); }template<typename T>
static ostream& operator<<(ostream& o, const std::vector<T>& v) {
o << "[ "; for(const auto& e : v) o<<e<<' '; return o << ']';
}
template <typename I> struct MyRangeFormat{ I b,e; MyRangeFormat(I _b, I _e):b(_b),e(_e){} };
template<typename I> static ostream& operator<<(ostream& o, const MyRangeFormat<I>& f) {
o << "[ "; iterate(i,f.b,f.e) o<<*i<<' '; return o << ']';
}
template <typename I> struct MyMatrixFormat{
const I& p; long long n, m;
MyMatrixFormat(const I& _p, long long _n, long long _m):p(_p),n(_n),m(_m){}
};
template<typename I> static ostream& operator<<(ostream& o, const MyMatrixFormat<I>& f) {
o<<'\n'; repeat(i,(f.n)) { repeat(j,f.m) o<<f.p[i][j]<<' '; o<<'\n'; }
return o;
}
struct LOG_t { ~LOG_t() { cout << endl; } };
#define LOG (LOG_t(),cout<<'L'<<__LINE__<<": ")
#define FMTA(m,w) (MyRangeFormat<decltype(m+0)>(m,m+w))
#define FMTR(b,e) (MyRangeFormat<decltype(e)>(b,e))
#define FMTV(v) FMTR(v.begin(),v.end())
#define FMTM(m,h,w) (MyMatrixFormat<decltype(m+0)>(m,h,w))
#if defined(_WIN32) || defined(_WIN64)
#define getc_x _getc_nolock
#define putc_x _putc_nolock
#elif defined(__GNUC__)
#define getc_x getc_unlocked
#define putc_x putc_unlocked
#else
#define getc_x getc
#define putc_x putc
#endif
class MaiScanner {
FILE* fp_;
constexpr bool isvisiblechar(char c) noexcept { return (0x21<=(c)&&(c)<=0x7E); }
public:
inline MaiScanner(FILE* fp):fp_(fp){}
template<typename T> void input_integer(T& var) noexcept {
var = 0; T sign = 1;
int cc = getc_x(fp_);
for (; cc < '0' || '9' < cc; cc = getc_x(fp_))
if (cc == '-') sign = -1;
for (; '0' <= cc && cc <= '9'; cc = getc_x(fp_))
var = (var << 3) + (var << 1) + cc - '0';
var = var * sign;
}
inline int c() noexcept { return getc_x(fp_); }
template<typename T, typename enable_if<is_integral<T>::value, nullptr_t>::type = nullptr>
inline MaiScanner& operator>>(T& var) noexcept { input_integer<T>(var); return *this; }
inline MaiScanner& operator>>(string& var) {
int cc = getc_x(fp_);
for (; !isvisiblechar(cc); cc = getc_x(fp_));
for (; isvisiblechar(cc); cc = getc_x(fp_))
var.push_back(cc);
return *this;
}
template<typename IT> inline void in(IT begin, IT end) { for (auto it = begin; it != end; ++it) *this >> *it; }
};
class MaiPrinter {
FILE* fp_;
public:
inline MaiPrinter(FILE* fp):fp_(fp){}
template<typename T>
void output_integer(T var) noexcept {
if (var == 0) { putc_x('0', fp_); return; }
if (var < 0)
putc_x('-', fp_),
var = -var;
char stack[32]; int stack_p = 0;
while (var)
stack[stack_p++] = '0' + (var % 10),
var /= 10;
while (stack_p)
putc_x(stack[--stack_p], fp_);
}
inline MaiPrinter& operator<<(char c) noexcept { putc_x(c, fp_); return *this; }
template<typename T, typename enable_if<is_integral<T>::value, nullptr_t>::type = nullptr>
inline MaiPrinter& operator<<(T var) noexcept { output_integer<T>(var); return *this; }
inline MaiPrinter& operator<<(const char* str_p) noexcept { while (*str_p) putc_x(*(str_p++), fp_); return *this; }
inline MaiPrinter& operator<<(const string& str) {
const char* p = str.c_str();
const char* l = p + str.size();
while (p < l) putc_x(*p++, fp_);
return *this;
}
template<typename IT> void join(IT begin, IT end, char sep = ' ') { for (bool b = 0; begin != end; ++begin, b = 1) b ? *this << sep << *begin : *this << *begin; }
};
MaiScanner scanner(stdin);
MaiPrinter printer(stdout);
// clang-format on
class DGraphF {
public:
typedef int cap_t;
int n_;
struct Arc {
int from, to;
// 残量
cap_t left;
// 容量
cap_t cap;
Arc(int from = 0, int to = 0, cap_t w = 1) : from(from), to(to), left(w), cap(w) {}
inline bool operator<(const Arc& a) const {
return (left != a.left) ? left < a.left
: (left < a.left) | (cap < a.cap) | (from < a.from) | (to < a.to);
}
inline bool operator==(const Arc& a) const {
return (from == a.from) && (to == a.to) && (left == a.left) && (cap == a.cap);
}
};
vector<vector<int>> vertex_to;
vector<vector<int>> vertex_from;
vector<Arc> edges;
explicit DGraphF(int n = 1) : n_(n), vertex_to(n), vertex_from(n) {}
void connect(int from, int to, cap_t left) {
vertex_to[(int)from].push_back((int)edges.size()); // toto
vertex_from[(int)to].push_back((int)edges.size()); // fromfrom
edges.emplace_back(from, to, left);
}
inline int size() const { return n_; }
};
void dinic(DGraphF& graph, vector<DGraphF::cap_t>& result, int i_source, int i_sink) {
assert(i_source != i_sink);
result.resize(graph.n_);
vector<int> dist(graph.n_);
vector<bool> visited(graph.n_);
function<DGraphF::cap_t(int, int, DGraphF::cap_t)> _dfs =
[&](int u, int i_sink, DGraphF::cap_t mini) -> DGraphF::cap_t {
// DAG
// TODO: 経路再利用
if (i_sink == u)
return mini;
if (visited[u])
return -1;
visited[u] = true;
DGraphF::cap_t sumw = 0;
bool term = true;
for (int edgeidx : graph.vertex_to[u]) {
auto& edge = graph.edges[edgeidx];
if (edge.left > 0 && dist[u] > dist[edge.to]) {
DGraphF::cap_t f = (mini < 0) ? edge.left : min(edge.left, mini);
f = _dfs(edge.to, i_sink, f);
if (f == -1)
continue;
edge.left -= f;
result[edge.to] += f;
sumw += f;
mini -= f;
term = false;
visited[u] = false; // TODO: 末尾では?
if (mini == 0)
return sumw;
}
}
for (int edgeidx : graph.vertex_from[u]) {
auto& edge = graph.edges[edgeidx];
if (edge.cap > edge.left && dist[u] > dist[edge.from]) {
DGraphF::cap_t f = (mini < 0) ? (edge.cap - edge.left) : min(edge.cap - edge.left, mini);
f = _dfs(edge.from, i_sink, f);
if (f == -1)
continue;
edge.left += f;
result[edge.to] -= f;
sumw += f;
mini -= f;
term = false;
visited[u] = false;
if (mini == 0)
return sumw;
}
}
return term ? -1 : sumw;
};
queue<int> que;
for (int distbegin = 0;; distbegin += (int)graph.n_) {
// sinkからsourceへの距離を計算.
que.emplace(i_sink);
dist[i_sink] = distbegin + 1;
while (!que.empty()) {
int v = que.front();
que.pop();
for (int edgeidx : graph.vertex_from[v]) {
const auto edge = graph.edges[edgeidx];
if (0 < edge.left && dist[edge.from] <= distbegin) {
dist[edge.from] = dist[v] + 1;
que.push(edge.from);
}
}
for (int edgeidx : graph.vertex_to[v]) {
const auto edge = graph.edges[edgeidx];
if (edge.left < edge.cap && dist[edge.to] <= distbegin) {
dist[edge.to] = dist[v] + 1;
que.push(edge.to);
}
}
}
fill(visited.begin(), visited.end(), false);
if (dist[i_source] <= distbegin)
break;
else
result[i_source] += _dfs(i_source, i_sink, -1);
}
}
//
//
int main() {
int N, M;
scanner >> N >> M;
const int n = 2 + M + N*3 + N;
constexpr int v_s = 0;
constexpr int v_t = 1;
DGraphF graph(n);
repeat(i, M) {
int p,q,a,b;
scanner >> p >> q >> a >> b;
--a; --b; --p; --q;
graph.connect(v_s, 2 + i, 1);
graph.connect(2 + i, 2 + M + p*3 + a, 1);
if (p != q || a != b)
graph.connect(2 + i, 2 + M + q*3 + b, 1);
}
repeat(i, N) {
repeat(j, 3)
graph.connect(2 + M + i*3 + j, 2 + M + 3 * N + i, 1);
graph.connect(2 + M + 3 * N + i, v_t, 1);
}
vector<DGraphF::cap_t> result;
dinic(graph, result, v_s, v_t);
// LOG << result;
if (result[v_t] == M) {
repeat(i, N) {
int x = 0; // << any
repeat(j, 3) {
if (result[2 + M + i*3+j])
x = j;
}
printer << x + 1 << ' ';
}
} else {
printer << "-1\n";
}
return 0;
}