結果

問題 No.8092 3-2-SAT
ユーザー maimai
提出日時 2022-04-01 23:44:28
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 9,557 bytes
コンパイル時間 3,196 ms
コンパイル使用メモリ 229,312 KB
実行使用メモリ 66,052 KB
最終ジャッジ日時 2024-11-20 13:21:07
合計ジャッジ時間 12,907 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 AC 152 ms
44,060 KB
testcase_02 TLE -
testcase_03 AC 492 ms
39,592 KB
testcase_04 WA -
testcase_05 AC 1,312 ms
42,820 KB
testcase_06 AC 1,493 ms
36,720 KB
testcase_07 AC 47 ms
17,208 KB
testcase_08 AC 523 ms
25,040 KB
testcase_09 AC 36 ms
14,604 KB
testcase_10 AC 357 ms
23,728 KB
testcase_11 AC 2 ms
6,820 KB
testcase_12 AC 2 ms
6,820 KB
testcase_13 AC 2 ms
6,820 KB
testcase_14 AC 2 ms
6,820 KB
testcase_15 AC 2 ms
6,816 KB
testcase_16 AC 2 ms
6,816 KB
testcase_17 AC 2 ms
6,820 KB
testcase_18 AC 2 ms
6,816 KB
testcase_19 AC 1 ms
6,816 KB
testcase_20 AC 2 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize("O3")
#include <bits/stdc++.h>

// clang-format off
using namespace std;
using ll = long long int;

#define all(v) (v).begin(),(v).end()
#define repeat(cnt,l) for(typename remove_const<typename remove_reference<decltype(l)>::type>::type cnt={};(cnt)<(l);++(cnt))
#define rrepeat(cnt,l) for(auto cnt=(l)-1;0<=(cnt);--(cnt))
#define iterate(cnt,b,e) for(auto cnt=(b);(cnt)!=(e);++(cnt))
#define upto(cnt,b,e,step) for(auto cnt=(b);(cnt)<=(e);(cnt)+=(step))
#define downto(cnt,b,e,step) for(auto cnt=(b);(e)<=(cnt);(cnt)-=(step))
const long long MD = 998244353; const long double PI = 3.1415926535897932384626433832795L;
template<typename T1, typename T2> inline ostream& operator <<(ostream &o, const pair<T1, T2> p) { o << '(' << p.first << ':' << p.second << ')'; return o; }
template<typename T> inline T& chmax(T& to, const T& val) { return to = max(to, val); }
template<typename T> inline T& chmin(T& to, const T& val) { return to = min(to, val); }
void bye(string s, int code = 0) { cout << s << endl; exit(code); }
mt19937_64 randdev(8901016);
template<typename T, typename Random = decltype(randdev), typename enable_if<is_integral<T>::value>::type* = nullptr>
inline T rand(T l, T h, Random& rand = randdev) { return uniform_int_distribution<T>(l, h)(rand); }
template<typename T, typename Random = decltype(randdev), typename enable_if<is_floating_point<T>::value>::type* = nullptr>
inline T rand(T l, T h, Random& rand = randdev) { return uniform_real_distribution<T>(l, h)(rand); }template<typename T>
static ostream& operator<<(ostream& o, const std::vector<T>& v) {
  o << "[ "; for(const auto& e : v) o<<e<<' '; return o << ']';
}

template <typename I> struct MyRangeFormat{ I b,e; MyRangeFormat(I _b, I _e):b(_b),e(_e){} };
template<typename I> static ostream& operator<<(ostream& o, const MyRangeFormat<I>& f) {
  o << "[ "; iterate(i,f.b,f.e) o<<*i<<' '; return o << ']';
}
template <typename I> struct MyMatrixFormat{
  const I& p; long long n, m;
  MyMatrixFormat(const I& _p, long long _n, long long _m):p(_p),n(_n),m(_m){}
};
template<typename I> static ostream& operator<<(ostream& o, const MyMatrixFormat<I>& f) {
  o<<'\n'; repeat(i,(f.n)) { repeat(j,f.m) o<<f.p[i][j]<<' '; o<<'\n'; }
  return o;
}
struct LOG_t { ~LOG_t() { cout << endl; } };
#define LOG (LOG_t(),cout<<'L'<<__LINE__<<": ")
#define FMTA(m,w) (MyRangeFormat<decltype(m+0)>(m,m+w))
#define FMTR(b,e) (MyRangeFormat<decltype(e)>(b,e))
#define FMTV(v) FMTR(v.begin(),v.end())
#define FMTM(m,h,w) (MyMatrixFormat<decltype(m+0)>(m,h,w))

#if defined(_WIN32) || defined(_WIN64)
#define getc_x _getc_nolock
#define putc_x _putc_nolock
#elif defined(__GNUC__)
#define getc_x getc_unlocked
#define putc_x putc_unlocked
#else
#define getc_x getc
#define putc_x putc
#endif
class MaiScanner {
  FILE* fp_;
  constexpr bool isvisiblechar(char c) noexcept { return (0x21<=(c)&&(c)<=0x7E); }
public:
  inline MaiScanner(FILE* fp):fp_(fp){}
  template<typename T> void input_integer(T& var) noexcept {
    var = 0; T sign = 1;
    int cc = getc_x(fp_);
    for (; cc < '0' || '9' < cc; cc = getc_x(fp_))
      if (cc == '-') sign = -1;
    for (; '0' <= cc && cc <= '9'; cc = getc_x(fp_))
      var = (var << 3) + (var << 1) + cc - '0';
    var = var * sign;
  }
  inline int c() noexcept { return getc_x(fp_); }
  template<typename T, typename enable_if<is_integral<T>::value, nullptr_t>::type = nullptr>
  inline MaiScanner& operator>>(T& var) noexcept { input_integer<T>(var); return *this; }
  inline MaiScanner& operator>>(string& var) {
    int cc = getc_x(fp_);
    for (; !isvisiblechar(cc); cc = getc_x(fp_));
    for (; isvisiblechar(cc); cc = getc_x(fp_))
      var.push_back(cc);
    return *this;
  }
  template<typename IT> inline void in(IT begin, IT end) { for (auto it = begin; it != end; ++it) *this >> *it; }
};
class MaiPrinter {
  FILE* fp_;
public:
  inline MaiPrinter(FILE* fp):fp_(fp){}
  template<typename T>
  void output_integer(T var) noexcept {
    if (var == 0) { putc_x('0', fp_); return; }
    if (var < 0)
      putc_x('-', fp_),
      var = -var;
    char stack[32]; int stack_p = 0;
    while (var)
      stack[stack_p++] = '0' + (var % 10),
      var /= 10;
    while (stack_p)
      putc_x(stack[--stack_p], fp_);
  }
  inline MaiPrinter& operator<<(char c) noexcept { putc_x(c, fp_); return *this; }
  template<typename T, typename enable_if<is_integral<T>::value, nullptr_t>::type = nullptr>
  inline MaiPrinter& operator<<(T var) noexcept { output_integer<T>(var); return *this; }
  inline MaiPrinter& operator<<(const char* str_p) noexcept { while (*str_p) putc_x(*(str_p++), fp_); return *this; }
  inline MaiPrinter& operator<<(const string& str) {
    const char* p = str.c_str();
    const char* l = p + str.size();
    while (p < l) putc_x(*p++, fp_);
    return *this;
  }
  template<typename IT> void join(IT begin, IT end, char sep = ' ') { for (bool b = 0; begin != end; ++begin, b = 1) b ? *this << sep << *begin : *this << *begin; }
};
MaiScanner scanner(stdin);
MaiPrinter printer(stdout);
// clang-format on

class DGraphF {
 public:
  typedef int cap_t;
  int n_;
  struct Arc {
    int from, to;
    // 残量
    cap_t left;
    // 容量
    cap_t cap;

    Arc(int from = 0, int to = 0, cap_t w = 1) : from(from), to(to), left(w), cap(w) {}
    inline bool operator<(const Arc& a) const {
      return (left != a.left) ? left < a.left
                              : (left < a.left) | (cap < a.cap) | (from < a.from) | (to < a.to);
    }
    inline bool operator==(const Arc& a) const {
      return (from == a.from) && (to == a.to) && (left == a.left) && (cap == a.cap);
    }
  };
  vector<vector<int>> vertex_to;
  vector<vector<int>> vertex_from;
  vector<Arc> edges;

  explicit DGraphF(int n = 1) : n_(n), vertex_to(n), vertex_from(n) {}

  void connect(int from, int to, cap_t left) {
    vertex_to[(int)from].push_back((int)edges.size());  // toto
    vertex_from[(int)to].push_back((int)edges.size());  // fromfrom
    edges.emplace_back(from, to, left);
  }

  inline int size() const { return n_; }
};

void dinic(DGraphF& graph, vector<DGraphF::cap_t>& result, int i_source, int i_sink) {
  assert(i_source != i_sink);

  result.resize(graph.n_);
  vector<int> dist(graph.n_);
  vector<bool> visited(graph.n_);

  function<DGraphF::cap_t(int, int, DGraphF::cap_t)> _dfs =
      [&](int u, int i_sink, DGraphF::cap_t mini) -> DGraphF::cap_t {
    // DAG
    // TODO: 経路再利用
    if (i_sink == u)
      return mini;
    if (visited[u])
      return -1;
    visited[u] = true;

    DGraphF::cap_t sumw = 0;
    bool term = true;
    for (int edgeidx : graph.vertex_to[u]) {
      auto& edge = graph.edges[edgeidx];
      if (edge.left > 0 && dist[u] > dist[edge.to]) {
        DGraphF::cap_t f = (mini < 0) ? edge.left : min(edge.left, mini);

        f = _dfs(edge.to, i_sink, f);
        if (f == -1)
          continue;
        edge.left -= f;
        result[edge.to] += f;

        sumw += f;
        mini -= f;
        term = false;
        visited[u] = false;  // TODO: 末尾では?
        if (mini == 0)
          return sumw;
      }
    }
    for (int edgeidx : graph.vertex_from[u]) {
      auto& edge = graph.edges[edgeidx];
      if (edge.cap > edge.left && dist[u] > dist[edge.from]) {
        DGraphF::cap_t f = (mini < 0) ? (edge.cap - edge.left) : min(edge.cap - edge.left, mini);

        f = _dfs(edge.from, i_sink, f);
        if (f == -1)
          continue;
        edge.left += f;
        result[edge.to] -= f;

        sumw += f;
        mini -= f;
        term = false;
        visited[u] = false;
        if (mini == 0)
          return sumw;
      }
    }
    return term ? -1 : sumw;
  };

  queue<int> que;
  for (int distbegin = 0;; distbegin += (int)graph.n_) {
    // sinkからsourceへの距離を計算.
    que.emplace(i_sink);
    dist[i_sink] = distbegin + 1;
    while (!que.empty()) {
      int v = que.front();
      que.pop();
      for (int edgeidx : graph.vertex_from[v]) {
        const auto edge = graph.edges[edgeidx];
        if (0 < edge.left && dist[edge.from] <= distbegin) {
          dist[edge.from] = dist[v] + 1;
          que.push(edge.from);
        }
      }
      for (int edgeidx : graph.vertex_to[v]) {
        const auto edge = graph.edges[edgeidx];
        if (edge.left < edge.cap && dist[edge.to] <= distbegin) {
          dist[edge.to] = dist[v] + 1;
          que.push(edge.to);
        }
      }
    }
    fill(visited.begin(), visited.end(), false);

    if (dist[i_source] <= distbegin)
      break;
    else
      result[i_source] += _dfs(i_source, i_sink, -1);
  }
}

//



//


int main() {
  
  int N, M;
  scanner >> N >> M;
  
  const int n = 2 + M + N*3 + N;
  constexpr int v_s = 0;
  constexpr int v_t = 1;
  
  DGraphF graph(n);
  
  repeat(i, M) {
    int p,q,a,b;
    scanner >> p >> q >> a >> b;
    --a; --b; --p; --q;
    graph.connect(v_s, 2 + i, 1);
    if (a >= 0)
    graph.connect(2 + i, 2 + M + p*3 + a, 1);
    if (p != q || a != b)
      if (b >= 0)
        graph.connect(2 + i, 2 + M + q*3 + b, 1);
  }
  
  repeat(i, N) {
    repeat(j, 3)
      graph.connect(2 + M + i*3 + j, 2 + M + 3 * N + i, 1);
    graph.connect(2 + M + 3 * N + i, v_t, 1);
  }
  
  vector<DGraphF::cap_t> result;
  dinic(graph, result, v_s, v_t);
  // LOG << result;
  if (result[v_t] == M) {
    repeat(i, N) {
      int x = 0;  // << any
      repeat(j, 3) {
        if (result[2 + M + i*3+j])
          x = j;
      }
      printer << x + 1 << ' ';
    }
  } else {
    printer << "-1\n";
  }
  
  return 0;
}
0