結果

問題 No.140 みんなで旅行
ユーザー noya2noya2
提出日時 2022-04-07 23:30:54
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
MLE  
実行時間 -
コード長 19,501 bytes
コンパイル時間 4,898 ms
コンパイル使用メモリ 282,048 KB
実行使用メモリ 817,408 KB
最終ジャッジ日時 2024-05-06 00:48:21
合計ジャッジ時間 7,357 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 61 ms
19,584 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 3 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 MLE -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
/*
#include <boost/multiprecision/cpp_dec_float.hpp>
#include <boost/multiprecision/cpp_int.hpp>
namespace mp = boost::multiprecision;
using bint = mp::cpp_int;
*/
#include <atcoder/all>
#define rep(i,n) for (int i = 0; i < int(n); ++i)
#define repp(i,n,m) for (int i = m; i < int(n); ++i)
#define repb(i,n) for (int i = int(n)-1; i >= 0; --i)
#define fi first
#define se second
#define endl "\n"
using namespace std;
using namespace atcoder;
using ll = long long;
using ld = long double;
using P = pair<int, int>;
using PL = pair<long long, long long>;
using Pxy = pair<long double, long double>;
using pil = pair<int,ll>;
using pli = pair<ll,int>;
using ppi = pair<P,int>;
using pip = pair<int,P>;
const int INF = 1001001007;
const long long mod1 = 1000000007LL;
const long long mod2 = 998244353LL;
const ll inf = 2e18;
const ld pi = 3.14159265358979323;
const ld eps = 1e-7;
const char _ = ' ';
template<class T>istream &operator>>(istream &is,vector<T> &v){for(auto &e:v)is>>e;return is;}
template<class T>ostream &operator<<(ostream &os,const vector<T> &v){if(v.size()!=0){rep(i,v.size())os<<v[i]<<(i+1==v.size()?"":" ");}return os;}
template<class T>istream &operator>>(istream &is,vector<vector<T>> &v){for(auto &e:v)is>>e;return is;}
template<class T>ostream &operator<<(ostream &os,const vector<vector<T>> &v){if(v.size()!=0){for(auto &e:v)os<<e;}return os;}
template<typename T>bool range(T a,T b,T x){return (a<=x&&x<b);}
template<typename T>bool rrange(T a,T b,T c,T d,T x,T y){return (range(a,c,x)&&range(b,d,y));}
template<typename T>void rev(vector<T> &v){reverse(v.begin(),v.end());}
void revs(string &s) {reverse(s.begin(),s.end());}
template<typename T>void sor(vector<T> &v, int f=0){sort(v.begin(),v.end());if(f!=0) rev(v);}
template<typename T>bool chmin(T &a,const T &b){if(a>b){a=b;return true;}return false;}
template<typename T>bool chmax(T &a,const T &b){if(a<b){a=b;return true;}return false;}
template<typename T>void eru(vector<T> &v){sor(v);v.erase(unique(v.begin(),v.end()),v.end());}
template<typename T>T cel(T a,T b){if(a%b==0)return a/b;return a/b +1;}
void o(){cout<<"!?"<<endl;}
template<typename T>void o(T a){cout<<a<<endl;}
template<typename T,typename U>void o2(T a,U b){cout<<a<<_<<b<<endl;}
template<typename T,typename U>void o2(pair<T,U> a){o2(a.first,a.second);}
template<typename T,typename U,typename V>void o3(T a,U b,V c){cout<<a<<_<<b<<_<<c<<endl;}
template<typename T>void mout(T a){cout<<a.val()<<endl;}
void yes(){cout << "Yes" << endl;}
void no (){cout << "No" << endl;}
void yn (bool t){if(t)yes();else no();}
template<typename T>void dame(bool t, T s){if(!t){cout << s << endl;exit(0);}}
void fast_io(){cin.tie(0); ios::sync_with_stdio(0); cout<<fixed<<setprecision(20);}
vector<int> dx = {0,1,0,-1};
vector<int> dy = {1,0,-1,0};
const string ALP = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
const string alp = "abcdefghijklmnopqrstuvwxyz";
const string NUM = "0123456789";

ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll mpow(ll x,ll n,ll m){if(n==0)return 1LL;x%=m;ll a=mpow(x,n/2,m);a=a*a%m;return (n&1)?a*x%m:a;}

template<typename T> ll tentou(vector<T> ar){
    int n = ar.size();
    set<T> st;
    rep(i,n) st.insert(ar[i]);
    map<T,int> mp;
    int ind = 0;
    for (T x : st){
        mp[x] = ind;
        ind++;
    }
    fenwick_tree<ll> fw(ind);
    ll ans = 0;
    rep(i,n){
        int a = mp[ar[i]];
        ans += i - fw.sum(0,a+1);
        fw.add(a,1);
    }
    return ans;
}

struct edge{
    int from, to, idx;
    long long cost;
    edge(int _from = -1, int _to = -1, long long _cost = 1LL, int _idx = -1) : from(_from), to(_to), cost(_cost), idx(_idx) {}
};

struct vertex{
    vector<edge> adj;
};

struct Graph{
    int n;
    vector<vertex> vs;
    void add_edge(int from, int to, long long cost = 1LL){
        assert(0 <= from && from < n);
        assert(0 <= to && to < n);
        vs[from].adj.emplace_back(edge(from,to,cost));
    }
    void add_dual_edge(int from, int to, long long cost = 1LL){
        assert(0 <= from && from < n);
        assert(0 <= to && to < n);
        vs[from].adj.emplace_back(edge(from,to,cost));
        vs[to].adj.emplace_back(edge(to,from,cost));
    }
    Graph(int _n) : n(_n) , vs(n) {}
    vector<long long> dijkstra(int s){
        using pli = pair<long long, int>;
        priority_queue<pli, vector<pli>, greater<pli>> pque;
        vector<long long> dist(n,inf);
        dist[s] = 0LL;
        pque.push(pli(0,s));
        while (!pque.empty()){
            pli p = pque.top(); pque.pop();
            if (dist[p.second] < p.first) continue;
            for (edge x : vs[p.second].adj){
                if (dist[x.to] > p.first + x.cost){
                    dist[x.to] = p.first + x.cost;
                    pque.push(pli(dist[x.to],x.to));
                }
            }
        }
        return dist;
    }
    vector<long long> bfs01(int s){
        deque<int> que;
        vector<long long> dist(n,inf);
        dist[s] = 0LL;
        que.push_front(s);
        while (!que.empty()){
            int p = que.front(); que.pop_front();
            for (edge x : vs[p].adj){
                if (dist[x.to] > dist[p] + x.cost){
                    dist[x.to] = dist[p] + x.cost;
                    if (x.cost == 0LL) que.push_front(x.to);
                    else que.push_back(x.to);
                }
            }
        }
        return dist;
    }
    vector<int> dfs(int s){
        vector<int> ans;
        vector<int> vis(n,0);
        _dfs(s,ans,vis);
        return ans;
    }
    private:
    void _dfs(int s, vector<int> &ans, vector<int> &vis){
        vis[s]++;
        for (edge x : vs[s].adj){
            if (vis[x.to] == 0){
                _dfs(x.to,ans,vis);
            }
        }
        ans.emplace_back(s);
    }
};

struct Tree{
    Tree(int _n, int _root = 0) : n(_n), root(_root) {
        assert(0 <= root && root < n);
        initialize();
    }
    void add_edge(int from, int to, long long cost = 1LL, int _idx = -1){
        assert(0 <= from && from < n);
        assert(0 <= to && to < n);
        if (_idx == -1) _idx = m, m++;
        assert(0 <= _idx && _idx < n-1);
        assert(edge_idx_cnt[_idx] == 0);
        edge_idx_cnt[_idx]++;
        vs[from].adj.emplace_back(edge(from,to,cost,_idx));
        es[_idx] = edge(from,to,cost,_idx);
    }
    void add_dual_edge(int from, int to, long long cost = 1LL, int _idx = -1){
        assert(0 <= from && from < n);
        assert(0 <= to && to < n);
        if (_idx == -1) _idx = m, m++;
        assert(0 <= _idx && _idx < n-1);
        assert(edge_idx_cnt[_idx] == 0);
        edge_idx_cnt[_idx]++;
        vs[from].adj.emplace_back(edge(from,to,cost,_idx));
        vs[to].adj.emplace_back(edge(to,from,cost,_idx));
        es[_idx] = edge(from,to,cost,_idx);
    }
    int size(){return n;}
    int parent(int v){
        assert(0 <= v && v < n);
        if (is_done_par_rdist_init == false) par_rdist_init();
        return par[v];
    }
    int depth(int v){
        assert(0 <= v && v < n);
        if (dep[v] != -1) return dep[v];
        if (v == root) return dep[v] = 0;
        return dep[v] = depth(parent(v)) + 1;
    }
    int subtree_size(int v){
        assert(0 <= v && v < n);
        if (sub[v] != 0) return sub[v];
        sub[v] = 1;
        for (edge x : vs[v].adj){
            if (x.to != parent(v)) sub[v] += subtree_size(x.to);
        }
        return sub[v];
    }
    int lca(int u, int v){
        assert(0 <= u && u < n);
        assert(0 <= v && v < n);
        if (is_done_lca_init == false) lca_init();
        if (depth(u) > depth(v)) swap(u,v);
        for (int i = 0; i < 30; i++) if ((depth(v) - depth(u)) >> i & 1) v = par2[i][v];
        if (u == v) return u;
        for (int k = 29; k >= 0; k--){
            if (par2[k][u] != par2[k][v]) {
                u = par2[k][u];
                v = par2[k][v];
            }
        }
        return par2[0][u];
    }
    long long dist(int u, int v){
        assert(0 <= u && u < n);
        assert(0 <= v && v < n);
        if (is_done_par_rdist_init == false) par_rdist_init();
        return rdist[u] + rdist[v] - rdist[lca(u,v)] * 2LL;
    }
    vector<int> path(int f, int t){
        assert(0 <= f && f < n);
        assert(0 <= t && t < n);
        int v = lca(f,t);
        vector<int> fp = {f};
        vector<int> tp = {t};
        int fn = f, tn = t;
        while (fn != v){
            fn = parent(fn);
            fp.emplace_back(fn);
        }
        while (tn != v){
            tn = parent(tn);
            tp.emplace_back(tn);
        }
        for (int i = int(tp.size()) - 2; i >= 0; i--){
            fp.emplace_back(tp[i]);
        }
        return fp;
    }
    vector<long long> alldists(int v){
        assert(0 <= v && v < n);
        if (v == 0) return rdist;
        vector<long long> dists(n,1e18);
        vector<int> vis(n,0);
        dists[v] = 0LL;
        queue<int> que;
        que.push(v);
        while (!que.empty()){
            int p = que.front(); que.pop();
            vis[p]++;
            for (edge x : vs[p].adj){
                if (vis[x.to] == 0){
                    dists[x.to] = dists[p] + x.cost;
                    que.push(x.to);
                }
            }
        }
        return dists;
    }
    vector<int> dfs(int v){
        assert(0 <= v && v < n);
        vector<int> ans;
        vector<int> vis(n,0);
        _dfs(v,vis,ans);
        return ans;
    }
    edge to_parent(int v){
        assert(0 <= v && v < n && v != root);
        if (is_done_par_rdist_init == false) par_rdist_init();
        return es[epar[v]];
    }
    vector<vertex> vs;
    private:
    int n;
    int m;
    int root;
    int idx_vhfs;
    bool is_done_lca_init;
    bool is_done_par_rdist_init;
    vector<edge> es;
    vector<int> edge_idx_cnt;
    vector<int> par;
    vector<int> epar;
    vector<int> dep;
    vector<int> sub;
    vector<int> top;
    vector<long long> rdist;
    vector<vector<int>> par2;
    void initialize(){
        m = 0;
        is_done_lca_init = false;
        is_done_par_rdist_init = false;
        vs.resize(n);
        es.resize(n-1);
        edge_idx_cnt.resize(n-1,0);
        dep.resize(n,-1);
        sub.resize(n,0);
    }
    void lca_init(){
        par2.resize(30,vector<int>(n,-1));
        for (int i = 0; i < n; i++) par2[0][i] = parent(i);
        for (int i = 0; i < 29 ; i++) {
            for (int j = 0; j < n; j++) {
                if (par2[i][j] < 0) par2[i+1][j] = -1;
                else par2[i+1][j] = par2[i][par2[i][j]];
            }
        }
        is_done_lca_init = true;
    }
    void par_rdist_init(){
        par.resize(n,-2);
        epar.resize(n);
        rdist.resize(n,-1);
        par[root] = -1;
        rdist[root] = 0;
        queue<int> que;
        que.push(root);
        while (!que.empty()){
            int p = que.front(); que.pop();
            for (edge x : vs[p].adj){
                if (par[x.to] == -2){
                    par[x.to] = p;
                    epar[x.to] = x.idx;
                    rdist[x.to] = rdist[p] + x.cost;
                    que.push(x.to);
                }
            }
        }
        is_done_par_rdist_init = true;
    }
    void _dfs(int v, vector<int> &vis, vector<int> &ans){
        vis[v]++;
        for (edge x : vs[v].adj){
            if (vis[x.to] == 0) _dfs(x.to,vis,ans);
        }
        ans.emplace_back(v);
    }
};


template<typename T> struct doubling{
    vector<T> vec;
    doubling (vector<T> _vec) : vec(_vec) {}
    map<T,ll> mp;
    ll length_of_loop = -1;
    ll top_of_loop = -1;
    void init(){
        ll ind = 0;
        for (T x : vec){
            if (mp.find(x) == mp.end()) mp[x] = ind, ind++;
            else {
                length_of_loop = ind - mp[x];
                top_of_loop = mp[x];
                break;
            }
        }
    }
    ll len(){
        if (length_of_loop == -1) init();
        return length_of_loop;
    }
    ll top(){
        if (top_of_loop == -1) init();
        return top_of_loop;
    }
    T get(ll n){
        assert(0 <= n);
        if (n < top()) return vec[n];
        ll d = n - top();
        return vec[top() + (d % len())];
    }
};

struct Mo{
    vector<int> left, right, order, v;
    int width, nl, nr, ptr;
    Mo (int n = 0) : width(sqrt(n)), nl(0), nr(0), ptr(0), left(0), right(0), v(n,-1) {}
    void insert(int l, int r){ // [l,r)
        left.emplace_back(l);
        right.emplace_back(r);
    }
    void build(){ // sort all query
        order.resize(left.size());
        iota(order.begin(),order.end(),0);
        sort(order.begin(),order.end(),[&](int a, int b){
            if(left[a] / width != left[b] / width) return left[a] < left[b];
            return right[a] < right[b];
        });
    }
    int process(){ // do 1 query
        if (ptr == int(order.size())) return -1;
        const int id = order[ptr];
        while (nl > left[id]) distribute(--nl);
        while (nl < left[id]) distribute(nl++);
        while (nr > right[id]) distribute(--nr);
        while (nr < right[id]) distribute(nr++);
        return order[ptr++];
    }
    inline void distribute(int idx){ // x x x (nl) o o o (nr) x x ...
        v[idx] *= -1;
        if (v[idx] == 1) add(idx);
        else del(idx);
    }
    void add(int idx);
    void del(int idx);
};

template<typename T> struct Matrix{
    int rows;
    int cols;
    vector<vector<T>> m;
    Matrix (int h = 0, int w = 0, T init = T(0)) : m(h,vector<T>(w,init)), rows(h), cols(w){}
    Matrix (vector<vector<T>> _init) : m(_init), rows(_init.size()), cols(_init.at(0).size()){}
    vector<T>  operator[](const int i) const {return m[i];}
    vector<T>& operator[](const int i) {return m[i];}
    Matrix &operator+= (const Matrix &r){
        assert(this->rows == r.rows && this->cols == r.cols);
        for (int i = 0; i < r.rows; ++i){
            for (int j = 0; j < r.cols; ++j){
                m[i][j] += r.m[i][j];
            }
        }
        return *this;
    }
    Matrix &operator-= (const Matrix &r){
        assert(this->rows == r.rows && this->cols == r.cols);
        for (int i = 0; i < r.rows; ++i){
            for (int j = 0; j < r.cols; ++j){
                m[i][j] -= r.m[i][j];
            }
        }
        return *this;
    }
    Matrix &operator*= (const Matrix &r){
        assert(this->cols == r.rows);
        Matrix res(rows, r.cols);
        for (int i = 0; i < rows; ++i){
            for (int j = 0; j < r.cols; ++j){
                for (int k = 0; k < r.rows; ++k){
                    res[i][j] += m[i][k] * r.m[k][j];
                }
            }
        }
        return *this = res;
    }
    Matrix operator+ (const Matrix &r) const {return Matrix(*this) += r;}
    Matrix operator- (const Matrix &r) const {return Matrix(*this) -= r;}
    Matrix operator* (const Matrix &r) const {return Matrix(*this) *= r;}
    bool operator== (const Matrix &r){
        if (rows != r.rows || cols != r.cols) return false;
        for (int i = 0; i < r.rows; ++i){
            for (int j = 0; j < r.cols; ++j){
                if (m[i][j] != r.m[i][j]) return false;
            }
        }
        return true;
    }
    Matrix& operator+=(const T &r){
        for (int i = 0; i < rows; ++i){
            for (int j = 0; j < cols; ++j){
                m[i][j] += r;
            }
        }
        return *this;
    }
    Matrix& operator-=(const T &r){
        for (int i = 0; i < rows; ++i){
            for (int j = 0; j < cols; ++j){
                m[i][j] -= r;
            }
        }
        return *this;
    }
    Matrix& operator*=(const T &r){
        for (int i = 0; i < rows; ++i){
            for (int j = 0; j < cols; ++j){
                m[i][j] *= r;
            }
        }
        return *this;
    }
    Matrix& operator/=(const T &r){
        for (int i = 0; i < rows; ++i){
            for (int j = 0; j < cols; ++j){
                m[i][j] /= r;
            }
        }
        return *this;
    }
    Matrix operator+ (const T &r) const {return Matrix(*this) += r;}
    Matrix operator- (const T &r) const {return Matrix(*this) -= r;}
    Matrix operator* (const T &r) const {return Matrix(*this) *= r;}
    Matrix operator/ (const T &r) const {return Matrix(*this) /= r;}
    Matrix e(){
        assert(this->rows == this->cols);
        Matrix res(this->rows, this->rows);
        for (int i = 0; i < rows; ++i) res[i][i] = 1;
        return res;
    }
    Matrix matpow(ll n){
        assert(this->rows == this->cols);
        if (n == 0) return e();
        Matrix f = matpow(n / 2);
        Matrix ans = f * f;
        if (n % 2 == 1) ans *= *this;
        return ans;
    }
    // for T = int, long long, double, long double
    void show(){
        for (int i = 0; i < rows; ++i){
            for (int j = 0; j < cols; ++j){
                cout << m[i][j] << (j+1 == this->cols ? "\n" : " ");
            }
        }
    }
};

template<class S, S op(S l, S r), S e()> struct Rui{
    /*
    - op(e,x) = op(x,e) = x
    - op(l,opinv(l,lr)) = lr
    */
    int n;
    vector<S> vec, lrui, rrui;
    Rui (vector<S> _vec) : n(int(_vec.size())), vec(_vec) {
        lrui.resize(n+1), rrui.resize(n+1);
        lrui[0] = rrui[n] = e();
        for (int i = 0; i < n; i++) lrui[i+1] = op(lrui[i],vec[i]);
        for (int i = n; i > 0; i--) rrui[i-1] = op(rrui[i],vec[i-1]);
    }
    template<S opinv(S l, S lr)> S prod(int l, int r = -1){ // [l,r)
        if (r == -1) return vec[l];
        return opinv(lrui[l],lrui[r]);
    }
    S nprod(int l, int r = -1){ // [0,l) * [r,n)
        if (r == -1) r = l+1;
        return op(lrui[l],rrui[r]);
    }
};

struct MINT998244353{
    using mint = modint998244353;
    vector<mint> kaijo, kainv;
    int N;
    MINT998244353 (int lim = 200000) : N(lim), kaijo(lim+1,1), kainv(lim+1,1) {
        rep(i,N) kaijo[i+1] = kaijo[i] * (i+1);
        rep(i,N) kainv[i+1] = kainv[i] / (i+1);
    }
    mint factrial(int x){return kaijo[x];}
    mint inv_factorial(int x){return kainv[x];}
    mint ncr(int n, int r){return kaijo[n] * kainv[r] * kainv[n-r];}
    template<typename T> vector<mint> beki(T r, int n = -1){
        if (n == -1) n = N;
        vector<mint> res(n+1,1);
        rep(i,n) res[i+1] = res[i] * mint(r);
        return res;
    }
    vector<mint> vec_inv(vector<mint> &a){
        vector<mint> res(a.size());
        rep(i,int(a.size())) res[i] = a[i].inv();
        return res;
    }
};


int op(int a, int b){return a + b;}
int e(){return 0;}
int opinv(int a, int ab){return ab - a;}

void solve(){
    int n; cin >> n;
    using mint = modint1000000007;
    vector<vector<vector<mint>>> dp(n+1,vector<vector<mint>>(2*n+3,vector<mint>(n+1,0)));
    dp[0][0][0] = 1;
    rep(i,n) rep(j,2*n+1) rep(k,n){
        if (j < k) continue;
        if (j == 0){
            dp[i+1][j+1][k+1] += dp[i][j][k];
            dp[i+1][j+2][k] += dp[i][j][k];
            continue;
        }
        dp[i+1][j+1][k+1] += dp[i][j][k];
        dp[i+1][j][k] += dp[i][j][k] * mint(k);
        dp[i+1][j][k+1] += dp[i][j][k] * mint(j - k);
        if (j > 0) dp[i+1][j][k] += dp[i][j][k] * mint(j) * mint(j-1);
        dp[i+1][j+1][k] += dp[i][j][k] * mint(j) * mint(2);
        dp[i+1][j+2][k] += dp[i][j][k];
    }
    mint ans = 0;
    rep(i,n+1) {
        ans += dp[n][i][i];
        //mout(ans);
    }
    mout(ans);
}

int main(){
    fast_io();
    int t = 1; //cin >> t;
    while (t--) solve();
}
0