結果
| 問題 |
No.1900 Don't be Powers of 2
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2022-04-08 22:05:25 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 38 ms / 2,000 ms |
| コード長 | 17,797 bytes |
| コンパイル時間 | 2,651 ms |
| コンパイル使用メモリ | 228,780 KB |
| 最終ジャッジ日時 | 2025-01-28 16:09:57 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 42 |
ソースコード
// #pragma comment(linker, "/stack:200000000")
#include <bits/stdc++.h>
#include <limits>
#include <type_traits>
namespace suisen {
// ! utility
template <typename ...Types>
using constraints_t = std::enable_if_t<std::conjunction_v<Types...>, std::nullptr_t>;
template <bool cond_v, typename Then, typename OrElse>
constexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) {
if constexpr (cond_v) {
return std::forward<Then>(then);
} else {
return std::forward<OrElse>(or_else);
}
}
// ! function
template <typename ReturnType, typename Callable, typename ...Args>
using is_same_as_invoke_result = std::is_same<std::invoke_result_t<Callable, Args...>, ReturnType>;
template <typename F, typename T>
using is_uni_op = is_same_as_invoke_result<T, F, T>;
template <typename F, typename T>
using is_bin_op = is_same_as_invoke_result<T, F, T, T>;
template <typename Comparator, typename T>
using is_comparator = std::is_same<std::invoke_result_t<Comparator, T, T>, bool>;
// ! integral
template <typename T, typename = constraints_t<std::is_integral<T>>>
constexpr int bit_num = std::numeric_limits<std::make_unsigned_t<T>>::digits;
template <typename T, unsigned int n>
struct is_nbit { static constexpr bool value = bit_num<T> == n; };
template <typename T, unsigned int n>
static constexpr bool is_nbit_v = is_nbit<T, n>::value;
// ?
template <typename T>
struct safely_multipliable {};
template <>
struct safely_multipliable<int> { using type = long long; };
template <>
struct safely_multipliable<long long> { using type = __int128_t; };
template <>
struct safely_multipliable<unsigned int> { using type = unsigned long long; };
template <>
struct safely_multipliable<unsigned long long> { using type = __uint128_t; };
template <>
struct safely_multipliable<float> { using type = float; };
template <>
struct safely_multipliable<double> { using type = double; };
template <>
struct safely_multipliable<long double> { using type = long double; };
template <typename T>
using safely_multipliable_t = typename safely_multipliable<T>::type;
} // namespace suisen
// ! type aliases
using i128 = __int128_t;
using u128 = __uint128_t;
using ll = long long;
using uint = unsigned int;
using ull = unsigned long long;
template <typename T> using vec = std::vector<T>;
template <typename T> using vec2 = vec<vec <T>>;
template <typename T> using vec3 = vec<vec2<T>>;
template <typename T> using vec4 = vec<vec3<T>>;
template <typename T>
using pq_greater = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <typename T, typename U>
using umap = std::unordered_map<T, U>;
// ! macros (capital: internal macro)
#define OVERLOAD2(_1,_2,name,...) name
#define OVERLOAD3(_1,_2,_3,name,...) name
#define OVERLOAD4(_1,_2,_3,_4,name,...) name
#define REP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l);i<(r);i+=(s))
#define REP3(i,l,r) REP4(i,l,r,1)
#define REP2(i,n) REP3(i,0,n)
#define REPINF3(i,l,s) for(std::remove_reference_t<std::remove_const_t<decltype(l)>>i=(l);;i+=(s))
#define REPINF2(i,l) REPINF3(i,l,1)
#define REPINF1(i) REPINF2(i,0)
#define RREP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l)+fld((r)-(l)-1,s)*(s);i>=(l);i-=(s))
#define RREP3(i,l,r) RREP4(i,l,r,1)
#define RREP2(i,n) RREP3(i,0,n)
#define rep(...) OVERLOAD4(__VA_ARGS__, REP4 , REP3 , REP2 )(__VA_ARGS__)
#define rrep(...) OVERLOAD4(__VA_ARGS__, RREP4 , RREP3 , RREP2 )(__VA_ARGS__)
#define repinf(...) OVERLOAD3(__VA_ARGS__, REPINF3, REPINF2, REPINF1)(__VA_ARGS__)
#define CAT_I(a, b) a##b
#define CAT(a, b) CAT_I(a, b)
#define UNIQVAR(tag) CAT(tag, __LINE__)
#define loop(n) for (std::remove_reference_t<std::remove_const_t<decltype(n)>> UNIQVAR(loop_variable) = n; UNIQVAR(loop_variable) --> 0;)
#define all(iterable) (iterable).begin(), (iterable).end()
#define input(type, ...) type __VA_ARGS__; read(__VA_ARGS__)
// ! I/O utilities
// pair
template <typename T, typename U>
std::ostream& operator<<(std::ostream& out, const std::pair<T, U> &a) {
return out << a.first << ' ' << a.second;
}
// tuple
template <unsigned int N = 0, typename ...Args>
std::ostream& operator<<(std::ostream& out, const std::tuple<Args...> &a) {
if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) {
return out;
} else {
out << std::get<N>(a);
if constexpr (N + 1 < std::tuple_size_v<std::tuple<Args...>>) {
out << ' ';
}
return operator<<<N + 1>(out, a);
}
}
// vector
template <typename T>
std::ostream& operator<<(std::ostream& out, const std::vector<T> &a) {
for (auto it = a.begin(); it != a.end();) {
out << *it;
if (++it != a.end()) out << ' ';
}
return out;
}
// array
template <typename T, size_t N>
std::ostream& operator<<(std::ostream& out, const std::array<T, N> &a) {
for (auto it = a.begin(); it != a.end();) {
out << *it;
if (++it != a.end()) out << ' ';
}
return out;
}
inline void print() { std::cout << '\n'; }
template <typename Head, typename... Tail>
inline void print(const Head &head, const Tail &...tails) {
std::cout << head;
if (sizeof...(tails)) std::cout << ' ';
print(tails...);
}
template <typename Iterable>
auto print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") -> decltype(std::cout << *v.begin(), void()) {
for (auto it = v.begin(); it != v.end();) {
std::cout << *it;
if (++it != v.end()) std::cout << sep;
}
std::cout << end;
}
// pair
template <typename T, typename U>
std::istream& operator>>(std::istream& in, std::pair<T, U> &a) {
return in >> a.first >> a.second;
}
// tuple
template <unsigned int N = 0, typename ...Args>
std::istream& operator>>(std::istream& in, std::tuple<Args...> &a) {
if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) {
return in;
} else {
return operator>><N + 1>(in >> std::get<N>(a), a);
}
}
// vector
template <typename T>
std::istream& operator>>(std::istream& in, std::vector<T> &a) {
for (auto it = a.begin(); it != a.end(); ++it) in >> *it;
return in;
}
// array
template <typename T, size_t N>
std::istream& operator>>(std::istream& in, std::array<T, N> &a) {
for (auto it = a.begin(); it != a.end(); ++it) in >> *it;
return in;
}
template <typename ...Args>
void read(Args &...args) {
( std::cin >> ... >> args );
}
// ! integral utilities
// Returns pow(-1, n)
template <typename T>
constexpr inline int pow_m1(T n) {
return -(n & 1) | 1;
}
// Returns pow(-1, n)
template <>
constexpr inline int pow_m1<bool>(bool n) {
return -int(n) | 1;
}
// Returns floor(x / y)
template <typename T>
constexpr inline T fld(const T x, const T y) {
return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y;
}
template <typename T>
constexpr inline T cld(const T x, const T y) {
return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y;
}
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr>
constexpr inline int popcount(const T x) { return __builtin_popcount(x); }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>
constexpr inline int popcount(const T x) { return __builtin_popcount(x); }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>
constexpr inline int popcount(const T x) { return __builtin_popcountll(x); }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr>
constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>
constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>
constexpr inline int count_lz(const T x) { return x ? __builtin_clzll(x) : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr>
constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>
constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>
constexpr inline int count_tz(const T x) { return x ? __builtin_ctzll(x) : suisen::bit_num<T>; }
template <typename T>
constexpr inline int floor_log2(const T x) { return suisen::bit_num<T> - 1 - count_lz(x); }
template <typename T>
constexpr inline int ceil_log2(const T x) { return floor_log2(x) + ((x & -x) != x); }
template <typename T>
constexpr inline int kth_bit(const T x, const unsigned int k) { return (x >> k) & 1; }
template <typename T>
constexpr inline int parity(const T x) { return popcount(x) & 1; }
struct all_subset {
struct all_subset_iter {
const int s; int t;
constexpr all_subset_iter(int s) : s(s), t(s + 1) {}
constexpr auto operator*() const { return t; }
constexpr auto operator++() {}
constexpr auto operator!=(std::nullptr_t) { return t ? (--t &= s, true) : false; }
};
int s;
constexpr all_subset(int s) : s(s) {}
constexpr auto begin() { return all_subset_iter(s); }
constexpr auto end() { return nullptr; }
};
// ! container
template <typename T, typename Comparator, suisen::constraints_t<suisen::is_comparator<Comparator, T>> = nullptr>
auto priqueue_comp(const Comparator comparator) {
return std::priority_queue<T, std::vector<T>, Comparator>(comparator);
}
template <typename Iterable>
auto isize(const Iterable &iterable) -> decltype(int(iterable.size())) {
return iterable.size();
}
template <typename T, typename Gen, suisen::constraints_t<suisen::is_same_as_invoke_result<T, Gen, int>> = nullptr>
auto generate_vector(int n, Gen generator) {
std::vector<T> v(n);
for (int i = 0; i < n; ++i) v[i] = generator(i);
return v;
}
template <typename T>
auto generate_range_vector(T l, T r) {
return generate_vector(r - l, [l](int i) { return l + i; });
}
template <typename T>
auto generate_range_vector(T n) {
return generate_range_vector(0, n);
}
template <typename T>
void sort_unique_erase(std::vector<T> &a) {
std::sort(a.begin(), a.end());
a.erase(std::unique(a.begin(), a.end()), a.end());
}
template <typename InputIterator, typename BiConsumer>
auto foreach_adjacent_values(InputIterator first, InputIterator last, BiConsumer f) -> decltype(f(*first++, *last), void()) {
if (first != last) for (auto itr = first, itl = itr++; itr != last; itl = itr++) f(*itl, *itr);
}
template <typename Container, typename BiConsumer>
auto foreach_adjacent_values(Container c, BiConsumer f) -> decltype(c.begin(), c.end(), void()){
foreach_adjacent_values(c.begin(), c.end(), f);
}
// ! other utilities
// x <- min(x, y). returns true iff `x` has chenged.
template <typename T>
inline bool chmin(T &x, const T &y) {
if (y >= x) return false;
x = y;
return true;
}
// x <- max(x, y). returns true iff `x` has chenged.
template <typename T>
inline bool chmax(T &x, const T &y) {
if (y <= x) return false;
x = y;
return true;
}
namespace suisen {}
using namespace suisen;
using namespace std;
struct io_setup {
io_setup(int precision = 20) {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::cout << std::fixed << std::setprecision(precision);
}
} io_setup_ {};
// ! code from here
#include <algorithm>
#include <deque>
#include <random>
#include <utility>
#include <vector>
namespace suisen {
struct BipartiteMatching {
static constexpr int ABSENT = -1;
BipartiteMatching() {}
BipartiteMatching(int n, int m) : _n(n), _m(m), _to_r(_n, ABSENT), _to_l(_m, ABSENT), _g(n + m) {}
void add_edge(int fr, int to) {
_g[fr].push_back(to), _f = -1;
}
template <bool shuffle = true>
int solve() {
if (_f >= 0) return _f;
static std::mt19937 rng(std::random_device{}());
if constexpr (shuffle) for (auto &adj : _g) std::shuffle(adj.begin(), adj.end(), rng);
std::vector<int8_t> vis(_n, false);
auto dfs = [&, this](auto dfs, int u) -> bool {
if (std::exchange(vis[u], true)) return false;
for (int v : _g[u]) if (_to_l[v] == ABSENT) return _to_r[u] = v, _to_l[v] = u, true;
for (int v : _g[u]) if (dfs(dfs, _to_l[v])) return _to_r[u] = v, _to_l[v] = u, true;
return false;
};
for (bool upd = true; std::exchange(upd, false);) {
vis.assign(_n, false);
for (int i = 0; i < _n; ++i) if (_to_r[i] == ABSENT) upd |= dfs(dfs, i);
}
return _f = _n - std::count(_to_r.begin(), _to_r.end(), ABSENT);
}
std::vector<std::pair<int, int>> max_matching() {
if (_f < 0) _f = solve();
std::vector<std::pair<int, int>> res;
res.reserve(_f);
for (int i = 0; i < _n; ++i) if (_to_r[i] != ABSENT) res.emplace_back(i, _to_r[i]);
return res;
}
std::vector<std::pair<int, int>> min_edge_cover() {
auto res = max_matching();
std::vector<bool> vl(_n, false), vr(_n, false);
for (const auto &[u, v] : res) vl[u] = vr[v] = true;
for (int u = 0; u < _n; ++u) for (int v : _g[u]) if (not (vl[u] and vr[v])) {
vl[u] = vr[v] = true;
res.emplace_back(u, v);
}
return res;
}
std::vector<int> min_vertex_cover() {
if (_f < 0) _f = solve();
std::vector<std::vector<int>> g(_n + _m);
std::vector<bool> cl(_n, true), cr(_m, false);
for (int u = 0; u < _n; ++u) for (int v : _g[u]) {
if (_to_r[u] == v) {
g[v + _n].push_back(u);
cl[u] = false;
} else {
g[u].push_back(v + _n);
}
}
std::vector<bool> vis(_n + _m, false);
std::deque<int> dq;
for (int i = 0; i < _n; ++i) if (cl[i]) {
dq.push_back(i);
vis[i] = true;
}
while (dq.size()) {
int u = dq.front();
dq.pop_front();
for (int v : g[u]) {
if (vis[v]) continue;
vis[v] = true;
(v < _n ? cl[v] : cr[v - _n]) = true;
dq.push_back(v);
}
}
std::vector<int> res;
for (int i = 0; i < _n; ++i) if (not cl[i]) res.push_back(i);
for (int i = 0; i < _m; ++i) if (cr[i]) res.push_back(_n + i);
return res;
}
std::vector<int> max_independent_set() {
std::vector<bool> use(_n + _m, true);
for (int v : min_vertex_cover()) use[v] = false;
std::vector<int> res;
for (int i = 0; i < _n + _m; ++i) if (use[i]) res.push_back(i);
return res;
}
int left_size() const { return _n; }
int right_size() const { return _m; }
std::pair<int, int> size() const { return { _n, _m }; }
int right(int l) const { return _to_r[l]; }
int left(int r) const { return _to_l[r]; }
const auto graph() const { return _g; }
auto reversed_graph() const {
std::vector<std::vector<int>> h(_m);
for (int i = 0; i < _n; ++i) for (int j : _g[i]) h[j].push_back(i);
return h;
}
private:
int _n, _m;
std::vector<int> _to_r, _to_l;
std::vector<std::vector<int>> _g;
int _f = 0;
};
} // namespace suisen
#include <optional>
namespace suisen {
static std::optional<std::vector<int>> bipartite_coloring(const std::vector<std::vector<int>>& g, int col0 = 0, int col1 = 1) {
const int n = g.size();
int uncolored = 2;
while (uncolored == col0 or uncolored == col1) ++uncolored;
std::vector<int> color(n, uncolored);
for (int i = 0; i < n; ++i) {
if (color[i] != uncolored) continue;
color[i] = col0;
std::deque<int> dq { i };
while (dq.size()) {
int u = dq.front();
dq.pop_front();
for (int v : g[u]) {
if (color[v] == uncolored) {
dq.push_back(v);
color[v] = color[u] ^ col0 ^ col1;
} else if (color[v] == color[u]) {
return std::nullopt;
}
}
}
}
return color;
}
} // namespace suisen
int main() {
input(int, n);
vector<int> a(n);
read(a);
map<int, vector<int>> mp;
rep(i, n) {
mp[a[i]].push_back(i);
}
vector<vector<int>> g(n);
rep(i, n) {
rep(bit, 30) {
for (int j : mp[a[i] ^ (1 << bit)]) {
g[i].push_back(j);
}
}
}
auto bip = *bipartite_coloring(g);
vector<int> id(n);
int l = 0, r = 0;
rep(i, n) {
if (bip[i] == 0) {
id[i] = l++;
} else {
id[i] = r++;
}
}
BipartiteMatching m(l, r);
rep(i, n) {
if (bip[i] == 1) continue;
for (int j : g[i]) {
m.add_edge(id[i], id[j]);
}
}
print(m.max_independent_set().size());
return 0;
}