結果
| 問題 | 
                            No.1900 Don't be Powers of 2
                             | 
                    
| コンテスト | |
| ユーザー | 
                             | 
                    
| 提出日時 | 2022-04-08 23:41:01 | 
| 言語 | PyPy3  (7.3.15)  | 
                    
| 結果 | 
                             
                                AC
                                 
                             
                            
                         | 
                    
| 実行時間 | 1,196 ms / 2,000 ms | 
| コード長 | 2,878 bytes | 
| コンパイル時間 | 281 ms | 
| コンパイル使用メモリ | 82,516 KB | 
| 実行使用メモリ | 285,636 KB | 
| 最終ジャッジ日時 | 2024-11-28 14:57:23 | 
| 合計ジャッジ時間 | 28,112 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge5 / judge4 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 42 | 
ソースコード
from collections import deque
class MaxFlow:
    inf = 10**18
    class E:
        def __init__(self,to,cap):
            self.to = to
            self.cap = cap
            self.rev = None
    def __init__(self,n):
        self.n = n
        self.graph = [[] for _ in range(n)]
    def add_edge(self, fr, to, cap):
        graph = self.graph
        edge = self.E(to,cap)
        edge2 = self.E(fr,0)
        edge.rev = edge2
        edge2.rev = edge
        graph[fr].append(edge)
        graph[to].append(edge2)
    def bfs(self, s, t):
        level = self.level = [self.n]*self.n
        q = deque([s])
        level[s] = 0
        while q:
            now = q.popleft()
            lw = level[now]+1
            for e in self.graph[now]:
                if e.cap and level[e.to]> lw:
                    level[e.to] = lw
                    if e.to == t:
                        return True
                    q.append(e.to)
        return False
    def dfs(self, s, t, up):
        graph = self.graph
        it = self.it
        level = self.level
        st = deque([t])
        while st:
            v = st[-1]
            if v == s:
                st.pop()
                flow = up
                for w in st:
                    e = graph[w][it[w]].rev
                    flow = min(flow, e.cap)
                for w in st:
                    e = graph[w][it[w]]
                    e.cap += flow
                    e.rev.cap -= flow
                return flow
            lv = level[v]-1
            while it[v] < len(graph[v]):
                e = graph[v][it[v]]
                re = e.rev
                if re.cap == 0 or lv != level[e.to]:
                    it[v] += 1
                    continue
                st.append(e.to)
                break
            if it[v] == len(graph[v]):
                st.pop()
                level[v] = self.n
        return 0
    def flow(self,s,t,flow_limit=inf):
        flow = 0
        while flow < flow_limit and self.bfs(s,t):
            self.it = [0]*self.n
            while flow < flow_limit:
                f = self.dfs(s,t,flow_limit-flow)
                if f == 0:
                    break
                flow += f
        return flow
    def min_cut(self,s):
        visited = [0]*self.n
        q = deque([s])
        while q:
            v = q.pop()
            visited[v] = 1
            for e in self.graph[v]:
                if e.cap and not visited[e.to]:
                    q.append(e.to)
        return visited
n = int(input())
A = list(map(int,input().split()))
s = n
t = n+1
mf = MaxFlow(t+1)
for i in range(n):
    if bin(A[i]).count("1")%2 == 0:
        mf.add_edge(i,t,1)
        continue
    mf.add_edge(s,i,1)
    a = A[i]
    for j in range(n):
        if bin(a^A[j]).count("1") == 1:
            mf.add_edge(i,j,1)
        
ans = n - mf.flow(s,t)
print(ans)