結果

問題 No.1324 Approximate the Matrix
ユーザー ああいい
提出日時 2022-04-14 10:09:50
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,210 ms / 2,000 ms
コード長 3,494 bytes
コンパイル時間 322 ms
コンパイル使用メモリ 82,176 KB
実行使用メモリ 90,260 KB
最終ジャッジ日時 2024-12-24 05:46:48
合計ジャッジ時間 16,712 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 42
権限があれば一括ダウンロードができます

ソースコード

diff #

#その3 ベルマンフォード+ダイクストラ
from heapq import heappop,heappush
class MinCostFlow:
    inf = 10 ** 18

    def __init__(self,N):
        self.N = N
        self.G = [[] for _ in range(N)]
        self.H = [0] * N
        self.first = True
        self.edge = []

    def add_edge(self,fr,to,cap,cost):
        e = [to,cap,cost,None]
        r = e[3] = [fr,0,-cost,e]
        self.G[fr].append(e)
        self.G[to].append(r)
        self.edge.append(e)
        return len(self.edge) - 1
    def get_edge(self,i):
        return self.edge[i]
    def flow(self,s,t,f):
        N = self.N
        G = self.G
        inf = MinCostFlow.inf

        res = 0
        H = self.H
        prev_v = [0] * N
        prev_e = [None] * N

        d0 = [inf] * N
        dist = [inf] * N

        if self.first:
            self.first = False
            dist[:] = d0
            dist[s] = 0
            update = 1
            while update:
                update = 0
                for v in range(N):
                    if dist[v] == inf:continue
                    for e in G[v]:
                        w,cap,cost,_ = e
                        if cap > 0 and dist[v] + cost < dist[w]:
                            dist[w] = dist[v] + cost
                            prev_v[w] = v
                            prev_e[w] = e
                            update = 1
            H[:] = dist
            if dist[t] == inf:
                return None
            d = f
            v = t
            while v != s:
                d = min(d,prev_e[v][1])
                v = prev_v[v]
            f -= d
            res += d * H[t]
            v = t
            while v != s:
                e = prev_e[v]
                e[1] -= d
                e[3][1] += d
                v = prev_v[v]
        while f:
            dist[:] = d0
            dist[s] = 0
            q = [(0,s)]
            while q:
                c,v = heappop(q)
                if dist[v] < c:continue
                r0 = dist[v] + H[v]
                for e in G[v]:
                    w,cap,cost,_ = e
                    if cap > 0 and r0 + cost - H[w] < dist[w]:
                        dist[w] = r = r0 + cost - H[w]
                        prev_v[w] = v
                        prev_e[w] = e
                        heappush(q,(r,w))
            if dist[t] == inf:
                return None
            """
            for i in range(N):
                H[i] += dist[i]
            """
            H = [h + d for h,d in zip(H,dist)]
            d = f
            v = t
            while v != s:
                d = min(d,prev_e[v][1])
                v = prev_v[v]
            f -= d
            res += d * H[t]
            v = t
            while v != s:
                e = prev_e[v]
                e[1] -= d
                e[3][1] += d
                v = prev_v[v]
        return res

N,K = map(int,input().split())
A = list(map(int,input().split()))
B = list(map(int,input().split()))
P = [list(map(int,input().split())) for _ in range(N)]

mincost = MinCostFlow(N + N + 2)
s = N + N
t = N + N + 1
for i in range(N):
    for j in range(N):
        v = N + j
        for k in range(1,min(A[i],B[j])+1):
            mincost.add_edge(i,v,1,2 * (k - 1) + 1 - 2 * P[i][j])
for i in range(N):
    mincost.add_edge(s,i,A[i],0)
for j in range(N):
    mincost.add_edge(j + N,t,B[j],0)
ans = 0
for i in range(N):
    for j in range(N):
        ans += P[i][j] ** 2
ans += mincost.flow(s,t,K)
print(ans)
0