結果
問題 | No.1907 DETERMINATION |
ユーザー | hitonanode |
提出日時 | 2022-04-14 23:24:57 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 700 ms / 4,000 ms |
コード長 | 13,770 bytes |
コンパイル時間 | 2,384 ms |
コンパイル使用メモリ | 155,372 KB |
実行使用メモリ | 17,124 KB |
最終ジャッジ日時 | 2024-06-06 19:07:10 |
合計ジャッジ時間 | 30,156 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 15 ms
11,008 KB |
testcase_01 | AC | 16 ms
11,008 KB |
testcase_02 | AC | 15 ms
11,008 KB |
testcase_03 | AC | 15 ms
10,880 KB |
testcase_04 | AC | 16 ms
11,136 KB |
testcase_05 | AC | 15 ms
11,136 KB |
testcase_06 | AC | 16 ms
11,136 KB |
testcase_07 | AC | 285 ms
14,596 KB |
testcase_08 | AC | 121 ms
12,712 KB |
testcase_09 | AC | 198 ms
13,988 KB |
testcase_10 | AC | 595 ms
16,932 KB |
testcase_11 | AC | 140 ms
16,668 KB |
testcase_12 | AC | 632 ms
16,840 KB |
testcase_13 | AC | 622 ms
16,764 KB |
testcase_14 | AC | 570 ms
17,092 KB |
testcase_15 | AC | 138 ms
13,116 KB |
testcase_16 | AC | 51 ms
11,776 KB |
testcase_17 | AC | 549 ms
16,636 KB |
testcase_18 | AC | 406 ms
15,036 KB |
testcase_19 | AC | 26 ms
11,264 KB |
testcase_20 | AC | 589 ms
16,800 KB |
testcase_21 | AC | 70 ms
12,288 KB |
testcase_22 | AC | 226 ms
16,804 KB |
testcase_23 | AC | 599 ms
16,792 KB |
testcase_24 | AC | 200 ms
13,856 KB |
testcase_25 | AC | 16 ms
11,136 KB |
testcase_26 | AC | 667 ms
17,036 KB |
testcase_27 | AC | 700 ms
16,996 KB |
testcase_28 | AC | 656 ms
16,996 KB |
testcase_29 | AC | 677 ms
16,996 KB |
testcase_30 | AC | 16 ms
11,136 KB |
testcase_31 | AC | 680 ms
16,868 KB |
testcase_32 | AC | 684 ms
16,868 KB |
testcase_33 | AC | 658 ms
16,992 KB |
testcase_34 | AC | 652 ms
16,996 KB |
testcase_35 | AC | 17 ms
11,264 KB |
testcase_36 | AC | 16 ms
11,136 KB |
testcase_37 | AC | 15 ms
11,008 KB |
testcase_38 | AC | 654 ms
17,124 KB |
testcase_39 | AC | 659 ms
16,996 KB |
testcase_40 | AC | 663 ms
17,124 KB |
testcase_41 | AC | 681 ms
16,996 KB |
testcase_42 | AC | 685 ms
16,996 KB |
testcase_43 | AC | 666 ms
16,996 KB |
testcase_44 | AC | 663 ms
16,996 KB |
testcase_45 | AC | 666 ms
16,996 KB |
testcase_46 | AC | 648 ms
16,844 KB |
testcase_47 | AC | 660 ms
17,100 KB |
testcase_48 | AC | 665 ms
16,864 KB |
testcase_49 | AC | 655 ms
16,868 KB |
testcase_50 | AC | 663 ms
16,996 KB |
testcase_51 | AC | 671 ms
16,996 KB |
testcase_52 | AC | 16 ms
11,008 KB |
testcase_53 | AC | 244 ms
16,740 KB |
testcase_54 | AC | 252 ms
16,872 KB |
testcase_55 | AC | 17 ms
11,008 KB |
testcase_56 | AC | 245 ms
16,864 KB |
testcase_57 | AC | 243 ms
16,868 KB |
testcase_58 | AC | 482 ms
16,968 KB |
testcase_59 | AC | 489 ms
16,992 KB |
testcase_60 | AC | 493 ms
17,000 KB |
testcase_61 | AC | 536 ms
16,892 KB |
testcase_62 | AC | 488 ms
17,124 KB |
testcase_63 | AC | 650 ms
17,124 KB |
testcase_64 | AC | 17 ms
11,008 KB |
testcase_65 | AC | 17 ms
11,008 KB |
testcase_66 | AC | 16 ms
10,880 KB |
ソースコード
#include <cassert> #include <iostream> #include <utility> #include <vector> using namespace std; #include <chrono> #include <random> struct rand_int_ { using lint = long long; mt19937 mt; rand_int_() : mt(chrono::steady_clock::now().time_since_epoch().count()) {} lint operator()(lint x) { return this->operator()(0, x); } // [0, x) lint operator()(lint l, lint r) { uniform_int_distribution<lint> d(l, r - 1); return d(mt); } } rnd; // Upper Hessenberg reduction of square matrices // Complexity: O(n^3) // Reference: // http://www.phys.uri.edu/nigh/NumRec/bookfpdf/f11-5.pdf template <class Tp> void hessenberg_reduction(std::vector<std::vector<Tp>> &M) { assert(M.size() == M[0].size()); const int N = M.size(); for (int r = 0; r < N - 2; r++) { int piv = -1; for (int h = r + 1; h < N; ++h) { if (M[h][r] != 0) { piv = h; break; } } if (piv < 0) continue; for (int i = 0; i < N; i++) std::swap(M[r + 1][i], M[piv][i]); for (int i = 0; i < N; i++) std::swap(M[i][r + 1], M[i][piv]); const auto rinv = Tp(1) / M[r + 1][r]; for (int i = r + 2; i < N; i++) { const auto n = M[i][r] * rinv; for (int j = 0; j < N; j++) M[i][j] -= M[r + 1][j] * n; for (int j = 0; j < N; j++) M[j][r + 1] += M[j][i] * n; } } } // Characteristic polynomial of matrix M (|xI - M|) // Complexity: O(n^3) // R. Rehman, I. C. Ipsen, "La Budde's Method for Computing Characteristic Polynomials," 2011. template <class Tp> std::vector<Tp> characteristic_poly(std::vector<std::vector<Tp>> M) { hessenberg_reduction(M); const int N = M.size(); // p[i + 1] = (Characteristic polynomial of i-th leading principal minor) std::vector<std::vector<Tp>> p(N + 1); p[0] = {1}; for (int i = 0; i < N; i++) { p[i + 1].assign(i + 2, 0); for (int j = 0; j < i + 1; j++) p[i + 1][j + 1] += p[i][j]; for (int j = 0; j < i + 1; j++) p[i + 1][j] -= p[i][j] * M[i][i]; Tp betas = 1; for (int j = i - 1; j >= 0; j--) { betas *= M[j + 1][j]; Tp hb = -M[j][i] * betas; for (int k = 0; k < j + 1; k++) p[i + 1][k] += hb * p[j][k]; } } return p[N]; } #include <algorithm> #include <cassert> #include <cmath> #include <iterator> #include <type_traits> #include <utility> #include <vector> namespace matrix_ { struct has_id_method_impl { template <class T_> static auto check(T_ *) -> decltype(T_::id(), std::true_type()); template <class T_> static auto check(...) -> std::false_type; }; template <class T_> struct has_id : decltype(has_id_method_impl::check<T_>(nullptr)) {}; } // namespace matrix_ template <typename T> struct matrix { int H, W; std::vector<T> elem; typename std::vector<T>::iterator operator[](int i) { return elem.begin() + i * W; } inline T &at(int i, int j) { return elem[i * W + j]; } inline T get(int i, int j) const { return elem[i * W + j]; } int height() const { return H; } int width() const { return W; } std::vector<std::vector<T>> vecvec() const { std::vector<std::vector<T>> ret(H); for (int i = 0; i < H; i++) { std::copy(elem.begin() + i * W, elem.begin() + (i + 1) * W, std::back_inserter(ret[i])); } return ret; } operator std::vector<std::vector<T>>() const { return vecvec(); } matrix() = default; matrix(int H, int W) : H(H), W(W), elem(H * W) {} matrix(const std::vector<std::vector<T>> &d) : H(d.size()), W(d.size() ? d[0].size() : 0) { for (auto &raw : d) std::copy(raw.begin(), raw.end(), std::back_inserter(elem)); } template <typename T2, typename std::enable_if<matrix_::has_id<T2>::value>::type * = nullptr> static T2 _T_id() { return T2::id(); } template <typename T2, typename std::enable_if<!matrix_::has_id<T2>::value>::type * = nullptr> static T2 _T_id() { return T2(1); } static matrix Identity(int N) { matrix ret(N, N); for (int i = 0; i < N; i++) ret.at(i, i) = _T_id<T>(); return ret; } matrix operator-() const { matrix ret(H, W); for (int i = 0; i < H * W; i++) ret.elem[i] = -elem[i]; return ret; } matrix operator*(const T &v) const { matrix ret = *this; for (auto &x : ret.elem) x *= v; return ret; } matrix operator/(const T &v) const { matrix ret = *this; const T vinv = _T_id<T>() / v; for (auto &x : ret.elem) x *= vinv; return ret; } matrix operator+(const matrix &r) const { matrix ret = *this; for (int i = 0; i < H * W; i++) ret.elem[i] += r.elem[i]; return ret; } matrix operator-(const matrix &r) const { matrix ret = *this; for (int i = 0; i < H * W; i++) ret.elem[i] -= r.elem[i]; return ret; } matrix operator*(const matrix &r) const { matrix ret(H, r.W); for (int i = 0; i < H; i++) { for (int k = 0; k < W; k++) { for (int j = 0; j < r.W; j++) ret.at(i, j) += this->get(i, k) * r.get(k, j); } } return ret; } matrix &operator*=(const T &v) { return *this = *this * v; } matrix &operator/=(const T &v) { return *this = *this / v; } matrix &operator+=(const matrix &r) { return *this = *this + r; } matrix &operator-=(const matrix &r) { return *this = *this - r; } matrix &operator*=(const matrix &r) { return *this = *this * r; } bool operator==(const matrix &r) const { return H == r.H and W == r.W and elem == r.elem; } bool operator!=(const matrix &r) const { return H != r.H or W != r.W or elem != r.elem; } bool operator<(const matrix &r) const { return elem < r.elem; } matrix pow(int64_t n) const { matrix ret = Identity(H); bool ret_is_id = true; if (n == 0) return ret; for (int i = 63 - __builtin_clzll(n); i >= 0; i--) { if (!ret_is_id) ret *= ret; if ((n >> i) & 1) ret *= (*this), ret_is_id = false; } return ret; } std::vector<T> pow_vec(int64_t n, std::vector<T> vec) const { matrix x = *this; while (n) { if (n & 1) vec = x * vec; x *= x; n >>= 1; } return vec; }; matrix transpose() const { matrix ret(W, H); for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) ret.at(j, i) = this->get(i, j); } return ret; } // Gauss-Jordan elimination // - Require inverse for every non-zero element // - Complexity: O(H^2 W) template <typename T2, typename std::enable_if<std::is_floating_point<T2>::value>::type * = nullptr> static int choose_pivot(const matrix<T2> &mtr, int h, int c) noexcept { int piv = -1; for (int j = h; j < mtr.H; j++) { if (mtr.get(j, c) and (piv < 0 or std::abs(mtr.get(j, c)) > std::abs(mtr.get(piv, c)))) piv = j; } return piv; } template <typename T2, typename std::enable_if<!std::is_floating_point<T2>::value>::type * = nullptr> static int choose_pivot(const matrix<T2> &mtr, int h, int c) noexcept { for (int j = h; j < mtr.H; j++) { if (mtr.get(j, c) != T2()) return j; } return -1; } matrix gauss_jordan() const { int c = 0; matrix mtr(*this); std::vector<int> ws; ws.reserve(W); for (int h = 0; h < H; h++) { if (c == W) break; int piv = choose_pivot(mtr, h, c); if (piv == -1) { c++; h--; continue; } if (h != piv) { for (int w = 0; w < W; w++) { std::swap(mtr[piv][w], mtr[h][w]); mtr.at(piv, w) *= -_T_id<T>(); // To preserve sign of determinant } } ws.clear(); for (int w = c; w < W; w++) { if (mtr.at(h, w) != T()) ws.emplace_back(w); } const T hcinv = _T_id<T>() / mtr.at(h, c); for (int hh = 0; hh < H; hh++) if (hh != h) { const T coeff = mtr.at(hh, c) * hcinv; for (auto w : ws) mtr.at(hh, w) -= mtr.at(h, w) * coeff; mtr.at(hh, c) = T(); } c++; } return mtr; } int rank_of_gauss_jordan() const { for (int i = H * W - 1; i >= 0; i--) { if (elem[i] != 0) return i / W + 1; } return 0; } T determinant_of_upper_triangle() const { T ret = _T_id<T>(); for (int i = 0; i < H; i++) ret *= get(i, i); return ret; } int inverse() { assert(H == W); std::vector<std::vector<T>> ret = Identity(H), tmp = *this; int rank = 0; for (int i = 0; i < H; i++) { int ti = i; while (ti < H and tmp[ti][i] == 0) ti++; if (ti == H) { continue; } else { rank++; } ret[i].swap(ret[ti]), tmp[i].swap(tmp[ti]); T inv = _T_id<T>() / tmp[i][i]; for (int j = 0; j < W; j++) ret[i][j] *= inv; for (int j = i + 1; j < W; j++) tmp[i][j] *= inv; for (int h = 0; h < H; h++) { if (i == h) continue; const T c = -tmp[h][i]; for (int j = 0; j < W; j++) ret[h][j] += ret[i][j] * c; for (int j = i + 1; j < W; j++) tmp[h][j] += tmp[i][j] * c; } } *this = ret; return rank; } friend std::vector<T> operator*(const matrix &m, const std::vector<T> &v) { assert(m.W == int(v.size())); std::vector<T> ret(m.H); for (int i = 0; i < m.H; i++) { for (int j = 0; j < m.W; j++) ret[i] += m.get(i, j) * v[j]; } return ret; } friend std::vector<T> operator*(const std::vector<T> &v, const matrix &m) { assert(int(v.size()) == m.H); std::vector<T> ret(m.W); for (int i = 0; i < m.H; i++) { for (int j = 0; j < m.W; j++) ret[j] += v[i] * m.get(i, j); } return ret; } std::vector<T> prod(const std::vector<T> &v) const { return (*this) * v; } std::vector<T> prod_left(const std::vector<T> &v) const { return v * (*this); } template <class OStream> friend OStream &operator<<(OStream &os, const matrix &x) { os << "[(" << x.H << " * " << x.W << " matrix)"; os << "\n[column sums: "; for (int j = 0; j < x.W; j++) { T s = 0; for (int i = 0; i < x.H; i++) s += x.get(i, j); os << s << ","; } os << "]"; for (int i = 0; i < x.H; i++) { os << "\n["; for (int j = 0; j < x.W; j++) os << x.get(i, j) << ","; os << "]"; } os << "]\n"; return os; } template <class IStream> friend IStream &operator>>(IStream &is, matrix &x) { for (auto &v : x.elem) is >> v; return is; } }; #include <atcoder/modint> using mint = atcoder::modint998244353; #include <cassert> #include <iostream> #include <vector> // Utility functions for atcoder::static_modint<md> template <int md> std::istream &operator>>(std::istream &is, atcoder::static_modint<md> &x) { long long t; return is >> t, x = t, is; } template <int md> std::ostream &operator<<(std::ostream &os, const atcoder::static_modint<md> &x) { return os << x.val(); } // atcoder::static_modint<P>, P: prime number template <typename modint> struct acl_fac { std::vector<modint> facs, facinvs; acl_fac(int N) { assert(-1 <= N and N < modint::mod()); facs.resize(N + 1, 1); for (int i = 1; i <= N; i++) facs[i] = facs[i - 1] * i; facinvs.assign(N + 1, facs.back().inv()); for (int i = N; i > 0; i--) facinvs[i - 1] = facinvs[i] * i; } modint ncr(int n, int r) const { if (n < 0 or r < 0 or n < r) return 0; return facs[n] * facinvs[r] * facinvs[n - r]; } modint operator[](int i) const { return facs[i]; } modint finv(int i) const { return facinvs[i]; } }; acl_fac<mint> fac(1000000); int main() { cin.tie(nullptr), ios::sync_with_stdio(false); int N; cin >> N; vector M0(N, vector<mint>(N)), M1(N, vector<mint>(N)); for (auto &vec : M0) { for (auto &x : vec) { int v; cin >> v; x = v; } } for (auto &vec : M1) { for (auto &x : vec) { int v; cin >> v; x = v; } } const mint a = rnd(mint::mod()); // M0 + M1(x + a) の行列式を求める matrix<mint> M0_plus_aM1 = matrix(M0) + matrix(M1) * a; auto M_inv = M0_plus_aM1; int rank = M_inv.inverse(); if (rank < N) { for (int i = 0; i <= N; ++i) cout << 0 << '\n'; return 0; } mint det = M0_plus_aM1.gauss_jordan().determinant_of_upper_triangle(); cerr << det.val() << '\n'; auto poly = characteristic_poly((-matrix(M1) * M_inv).vecvec()); reverse(poly.begin(), poly.end()); for (auto e : poly) cerr << e << ' '; cerr << endl; vector<mint> ret(N + 1); for (int d = 0; d <= N; ++d) { // poly[d] * (x + a)^d for (int e = 0; e <= d; ++e) ret[e] += poly[d] * fac.ncr(d, e) * mint(-a).pow(d - e) * det; } for (auto x : ret) cout << x.val() << '\n'; }