結果
問題 | No.1907 DETERMINATION |
ユーザー | NyaanNyaan |
提出日時 | 2022-04-15 21:35:38 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 43,771 bytes |
コンパイル時間 | 4,848 ms |
コンパイル使用メモリ | 298,192 KB |
実行使用メモリ | 19,584 KB |
最終ジャッジ日時 | 2024-06-07 02:46:31 |
合計ジャッジ時間 | 20,541 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | TLE | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
testcase_39 | -- | - |
testcase_40 | -- | - |
testcase_41 | -- | - |
testcase_42 | -- | - |
testcase_43 | -- | - |
testcase_44 | -- | - |
testcase_45 | -- | - |
testcase_46 | -- | - |
testcase_47 | -- | - |
testcase_48 | -- | - |
testcase_49 | -- | - |
testcase_50 | -- | - |
testcase_51 | -- | - |
testcase_52 | -- | - |
testcase_53 | -- | - |
testcase_54 | -- | - |
testcase_55 | -- | - |
testcase_56 | -- | - |
testcase_57 | -- | - |
testcase_58 | -- | - |
testcase_59 | -- | - |
testcase_60 | -- | - |
testcase_61 | -- | - |
testcase_62 | -- | - |
testcase_63 | -- | - |
testcase_64 | -- | - |
testcase_65 | -- | - |
testcase_66 | -- | - |
ソースコード
// ごめんなさい、愚直が通りそうなので投げます >< /** * date : 2022-04-15 21:33:41 */ #define NDEBUG using namespace std; // intrinstic #include <immintrin.h> #include <algorithm> #include <array> #include <bitset> #include <cassert> #include <cctype> #include <cfenv> #include <cfloat> #include <chrono> #include <cinttypes> #include <climits> #include <cmath> #include <complex> #include <cstdarg> #include <cstddef> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <deque> #include <fstream> #include <functional> #include <initializer_list> #include <iomanip> #include <ios> #include <iostream> #include <istream> #include <iterator> #include <limits> #include <list> #include <map> #include <memory> #include <new> #include <numeric> #include <ostream> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <streambuf> #include <string> #include <tuple> #include <type_traits> #include <typeinfo> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> // utility namespace Nyaan { using ll = long long; using i64 = long long; using u64 = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; template <typename T> using V = vector<T>; template <typename T> using VV = vector<vector<T>>; using vi = vector<int>; using vl = vector<long long>; using vd = V<double>; using vs = V<string>; using vvi = vector<vector<int>>; using vvl = vector<vector<long long>>; template <typename T, typename U> struct P : pair<T, U> { template <typename... Args> P(Args... args) : pair<T, U>(args...) {} using pair<T, U>::first; using pair<T, U>::second; P &operator+=(const P &r) { first += r.first; second += r.second; return *this; } P &operator-=(const P &r) { first -= r.first; second -= r.second; return *this; } P &operator*=(const P &r) { first *= r.first; second *= r.second; return *this; } template <typename S> P &operator*=(const S &r) { first *= r, second *= r; return *this; } P operator+(const P &r) const { return P(*this) += r; } P operator-(const P &r) const { return P(*this) -= r; } P operator*(const P &r) const { return P(*this) *= r; } template <typename S> P operator*(const S &r) const { return P(*this) *= r; } P operator-() const { return P{-first, -second}; } }; using pl = P<ll, ll>; using pi = P<int, int>; using vp = V<pl>; constexpr int inf = 1001001001; constexpr long long infLL = 4004004004004004004LL; template <typename T> int sz(const T &t) { return t.size(); } template <typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template <typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template <typename T> inline T Max(const vector<T> &v) { return *max_element(begin(v), end(v)); } template <typename T> inline T Min(const vector<T> &v) { return *min_element(begin(v), end(v)); } template <typename T> inline long long Sum(const vector<T> &v) { return accumulate(begin(v), end(v), 0LL); } template <typename T> int lb(const vector<T> &v, const T &a) { return lower_bound(begin(v), end(v), a) - begin(v); } template <typename T> int ub(const vector<T> &v, const T &a) { return upper_bound(begin(v), end(v), a) - begin(v); } constexpr long long TEN(int n) { long long ret = 1, x = 10; for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1); return ret; } template <typename T, typename U> pair<T, U> mkp(const T &t, const U &u) { return make_pair(t, u); } template <typename T> vector<T> mkrui(const vector<T> &v, bool rev = false) { vector<T> ret(v.size() + 1); if (rev) { for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1]; } else { for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i]; } return ret; }; template <typename T> vector<T> mkuni(const vector<T> &v) { vector<T> ret(v); sort(ret.begin(), ret.end()); ret.erase(unique(ret.begin(), ret.end()), ret.end()); return ret; } template <typename F> vector<int> mkord(int N,F f) { vector<int> ord(N); iota(begin(ord), end(ord), 0); sort(begin(ord), end(ord), f); return ord; } template <typename T> vector<int> mkinv(vector<T> &v) { int max_val = *max_element(begin(v), end(v)); vector<int> inv(max_val + 1, -1); for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i; return inv; } vector<int> mkiota(int n) { vector<int> ret(n); iota(begin(ret), end(ret), 0); return ret; } template <typename T> T mkrev(const T &v) { T w{v}; reverse(begin(w), end(w)); return w; } template <typename T> bool nxp(vector<T> &v) { return next_permutation(begin(v), end(v)); } #define inV(T, v, n) \ vector<T> v(n); \ in(v) #define inVV(T, v, h, w) \ vector<vector<T>> v(h, vector<T>(w)); \ in(v); template <typename T> using minpq = priority_queue<T, vector<T>, greater<T>>; // 区間:半開区間 (ng, ok] または [ok, ng) template <typename T, typename F> T binary_search(T ng, T ok, const F& f) { if constexpr (is_integral<T>::value == true) { while (abs(ok - ng) > 1) { T x = (ok + ng) / 2; (f(x) ? ok : ng) = x; } return ok; } else { for (int iter = 0; iter < 60; iter++) { T x = (ok + ng) / 2; (f(x) ? ok : ng) = x; } return ok; } } // 解区間 (l, r) template <typename T, typename F> void ternary_search(T l, T r, const F& f, bool greater = false) { if constexpr (is_integral<T>::value == true) { while (abs(l - r) > 2) { T llr = (l * 2 + r * 1) / 3; T lrr = (l * 1 + r * 2) / 3; bool flag = f(llr) < f(lrr); if (flag != greater) { r = lrr; } else { l = llr; } } return (l + r) / 2; } else { for (int iter = 0; iter < 80; iter++) { T llr = (l * 2 + r * 1) / 3; T lrr = (l * 1 + r * 2) / 3; bool flag = f(llr) < f(lrr); if (flag != greater) { r = lrr; } else { l = llr; } } return (l + r) / 2; } } } // namespace Nyaan // bit operation namespace Nyaan { __attribute__((target("popcnt"))) inline int popcnt(const u64 &a) { return _mm_popcnt_u64(a); } inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; } inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; } inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; } template <typename T> inline int gbit(const T &a, int i) { return (a >> i) & 1; } template <typename T> inline void sbit(T &a, int i, bool b) { if (gbit(a, i) != b) a ^= T(1) << i; } constexpr long long PW(int n) { return 1LL << n; } constexpr long long MSK(int n) { return (1LL << n) - 1; } } // namespace Nyaan // inout namespace Nyaan { template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &p) { os << p.first << " " << p.second; return os; } template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &p) { is >> p.first >> p.second; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &v) { int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template <typename T> istream &operator>>(istream &is, vector<T> &v) { for (auto &x : v) is >> x; return is; } istream &operator>>(istream &is, __int128_t &x) { string S; is >> S; x = 0; int flag = 0; for (auto &c : S) { if (c == '-') { flag = true; continue; } x *= 10; x += c - '0'; } if (flag) x = -x; return is; } istream &operator>>(istream &is, __uint128_t &x) { string S; is >> S; x = 0; for (auto &c : S) { x *= 10; x += c - '0'; } return is; } ostream &operator<<(ostream &os, __int128_t x) { if (x == 0) return os << 0; if (x < 0) os << '-', x = -x; string S; while (x) S.push_back('0' + x % 10), x /= 10; reverse(begin(S), end(S)); return os << S; } ostream &operator<<(ostream &os, __uint128_t x) { if (x == 0) return os << 0; string S; while (x) S.push_back('0' + x % 10), x /= 10; reverse(begin(S), end(S)); return os << S; } void in() {} template <typename T, class... U> void in(T &t, U &...u) { cin >> t; in(u...); } void out() { cout << "\n"; } template <typename T, class... U, char sep = ' '> void out(const T &t, const U &...u) { cout << t; if (sizeof...(u)) cout << sep; out(u...); } void outr() {} template <typename T, class... U, char sep = ' '> void outr(const T &t, const U &...u) { cout << t; outr(u...); } struct IoSetupNya { IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetupnya; } // namespace Nyaan // debug namespace DebugImpl { template <typename U, typename = void> struct is_specialize : false_type {}; template <typename U> struct is_specialize< U, typename conditional<false, typename U::iterator, void>::type> : true_type {}; template <typename U> struct is_specialize< U, typename conditional<false, decltype(U::first), void>::type> : true_type {}; template <typename U> struct is_specialize<U, enable_if_t<is_integral<U>::value, void>> : true_type { }; void dump(const char& t) { cerr << t; } void dump(const string& t) { cerr << t; } void dump(const bool& t) { cerr << (t ? "true" : "false"); } void dump(__int128_t t) { if (t == 0) cerr << 0; if (t < 0) cerr << '-', t = -t; string S; while (t) S.push_back('0' + t % 10), t /= 10; reverse(begin(S), end(S)); cerr << S; } void dump(__uint128_t t) { if (t == 0) cerr << 0; string S; while (t) S.push_back('0' + t % 10), t /= 10; reverse(begin(S), end(S)); cerr << S; } template <typename U, enable_if_t<!is_specialize<U>::value, nullptr_t> = nullptr> void dump(const U& t) { cerr << t; } template <typename T> void dump(const T& t, enable_if_t<is_integral<T>::value>* = nullptr) { string res; if (t == Nyaan::inf) res = "inf"; if constexpr (is_signed<T>::value) { if (t == -Nyaan::inf) res = "-inf"; } if constexpr (sizeof(T) == 8) { if (t == Nyaan::infLL) res = "inf"; if constexpr (is_signed<T>::value) { if (t == -Nyaan::infLL) res = "-inf"; } } if (res.empty()) res = to_string(t); cerr << res; } template <typename T, typename U> void dump(const pair<T, U>&); template <typename T> void dump(const pair<T*, int>&); template <typename T> void dump(const T& t, enable_if_t<!is_void<typename T::iterator>::value>* = nullptr) { cerr << "[ "; for (auto it = t.begin(); it != t.end();) { dump(*it); cerr << (++it == t.end() ? "" : ", "); } cerr << " ]"; } template <typename T, typename U> void dump(const pair<T, U>& t) { cerr << "( "; dump(t.first); cerr << ", "; dump(t.second); cerr << " )"; } template <typename T> void dump(const pair<T*, int>& t) { cerr << "[ "; for (int i = 0; i < t.second; i++) { dump(t.first[i]); cerr << (i == t.second - 1 ? "" : ", "); } cerr << " ]"; } void trace() { cerr << endl; } template <typename Head, typename... Tail> void trace(Head&& head, Tail&&... tail) { cerr << " "; dump(head); if (sizeof...(tail) != 0) cerr << ","; trace(forward<Tail>(tail)...); } } // namespace DebugImpl #ifdef NyaanDebug #define trc(...) \ do { \ cerr << "## " << #__VA_ARGS__ << " = "; \ DebugImpl::trace(__VA_ARGS__); \ } while (0) #else #define trc(...) (void(0)) #endif // macro #define each(x, v) for (auto&& x : v) #define each2(x, y, v) for (auto&& [x, y] : v) #define all(v) (v).begin(), (v).end() #define rep(i, N) for (long long i = 0; i < (long long)(N); i++) #define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--) #define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++) #define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--) #define reg(i, a, b) for (long long i = (a); i < (b); i++) #define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--) #define fi first #define se second #define ini(...) \ int __VA_ARGS__; \ in(__VA_ARGS__) #define inl(...) \ long long __VA_ARGS__; \ in(__VA_ARGS__) #define ins(...) \ string __VA_ARGS__; \ in(__VA_ARGS__) #define in2(s, t) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i]); \ } #define in3(s, t, u) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i]); \ } #define in4(s, t, u, v) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i], v[i]); \ } #define die(...) \ do { \ Nyaan::out(__VA_ARGS__); \ return; \ } while (0) namespace Nyaan { void solve(); } int main() { Nyaan::solve(); } // template <typename mint> struct NTT { static constexpr uint32_t get_pr() { uint32_t _mod = mint::get_mod(); using u64 = uint64_t; u64 ds[32] = {}; int idx = 0; u64 m = _mod - 1; for (u64 i = 2; i * i <= m; ++i) { if (m % i == 0) { ds[idx++] = i; while (m % i == 0) m /= i; } } if (m != 1) ds[idx++] = m; uint32_t _pr = 2; while (1) { int flg = 1; for (int i = 0; i < idx; ++i) { u64 a = _pr, b = (_mod - 1) / ds[i], r = 1; while (b) { if (b & 1) r = r * a % _mod; a = a * a % _mod; b >>= 1; } if (r == 1) { flg = 0; break; } } if (flg == 1) break; ++_pr; } return _pr; }; static constexpr uint32_t mod = mint::get_mod(); static constexpr uint32_t pr = get_pr(); static constexpr int level = __builtin_ctzll(mod - 1); mint dw[level], dy[level]; void setwy(int k) { mint w[level], y[level]; w[k - 1] = mint(pr).pow((mod - 1) / (1 << k)); y[k - 1] = w[k - 1].inverse(); for (int i = k - 2; i > 0; --i) w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1]; dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2]; for (int i = 3; i < k; ++i) { dw[i] = dw[i - 1] * y[i - 2] * w[i]; dy[i] = dy[i - 1] * w[i - 2] * y[i]; } } NTT() { setwy(level); } void fft4(vector<mint> &a, int k) { if ((int)a.size() <= 1) return; if (k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; return; } if (k & 1) { int v = 1 << (k - 1); for (int j = 0; j < v; ++j) { mint ajv = a[j + v]; a[j + v] = a[j] - ajv; a[j] += ajv; } } int u = 1 << (2 + (k & 1)); int v = 1 << (k - 2 - (k & 1)); mint one = mint(1); mint imag = dw[1]; while (v) { // jh = 0 { int j0 = 0; int j1 = v; int j2 = j1 + v; int j3 = j2 + v; for (; j0 < v; ++j0, ++j1, ++j2, ++j3) { mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3]; mint t0p2 = t0 + t2, t1p3 = t1 + t3; mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag; a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3; a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3; } } // jh >= 1 mint ww = one, xx = one * dw[2], wx = one; for (int jh = 4; jh < u;) { ww = xx * xx, wx = ww * xx; int j0 = jh * v; int je = j0 + v; int j2 = je + v; for (; j0 < je; ++j0, ++j2) { mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww, t3 = a[j2 + v] * wx; mint t0p2 = t0 + t2, t1p3 = t1 + t3; mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag; a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3; a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3; } xx *= dw[__builtin_ctzll((jh += 4))]; } u <<= 2; v >>= 2; } } void ifft4(vector<mint> &a, int k) { if ((int)a.size() <= 1) return; if (k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; return; } int u = 1 << (k - 2); int v = 1; mint one = mint(1); mint imag = dy[1]; while (u) { // jh = 0 { int j0 = 0; int j1 = v; int j2 = v + v; int j3 = j2 + v; for (; j0 < v; ++j0, ++j1, ++j2, ++j3) { mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3]; mint t0p1 = t0 + t1, t2p3 = t2 + t3; mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag; a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3; a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3; } } // jh >= 1 mint ww = one, xx = one * dy[2], yy = one; u <<= 2; for (int jh = 4; jh < u;) { ww = xx * xx, yy = xx * imag; int j0 = jh * v; int je = j0 + v; int j2 = je + v; for (; j0 < je; ++j0, ++j2) { mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v]; mint t0p1 = t0 + t1, t2p3 = t2 + t3; mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy; a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww; a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww; } xx *= dy[__builtin_ctzll(jh += 4)]; } u >>= 4; v <<= 2; } if (k & 1) { u = 1 << (k - 1); for (int j = 0; j < u; ++j) { mint ajv = a[j] - a[j + u]; a[j] += a[j + u]; a[j + u] = ajv; } } } void ntt(vector<mint> &a) { if ((int)a.size() <= 1) return; fft4(a, __builtin_ctz(a.size())); } void intt(vector<mint> &a) { if ((int)a.size() <= 1) return; ifft4(a, __builtin_ctz(a.size())); mint iv = mint(a.size()).inverse(); for (auto &x : a) x *= iv; } vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) { int l = a.size() + b.size() - 1; if (min<int>(a.size(), b.size()) <= 40) { vector<mint> s(l); for (int i = 0; i < (int)a.size(); ++i) for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j]; return s; } int k = 2, M = 4; while (M < l) M <<= 1, ++k; setwy(k); vector<mint> s(M), t(M); for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i]; for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i]; fft4(s, k); fft4(t, k); for (int i = 0; i < M; ++i) s[i] *= t[i]; ifft4(s, k); s.resize(l); mint invm = mint(M).inverse(); for (int i = 0; i < l; ++i) s[i] *= invm; return s; } void ntt_doubling(vector<mint> &a) { int M = (int)a.size(); auto b = a; intt(b); mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1)); for (int i = 0; i < M; i++) b[i] *= r, r *= zeta; ntt(b); copy(begin(b), end(b), back_inserter(a)); } }; template <typename mint> struct FormalPowerSeries : vector<mint> { using vector<mint>::vector; using FPS = FormalPowerSeries; FPS &operator+=(const FPS &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i]; return *this; } FPS &operator+=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] += r; return *this; } FPS &operator-=(const FPS &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i]; return *this; } FPS &operator-=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] -= r; return *this; } FPS &operator*=(const mint &v) { for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v; return *this; } FPS &operator/=(const FPS &r) { if (this->size() < r.size()) { this->clear(); return *this; } int n = this->size() - r.size() + 1; if ((int)r.size() <= 64) { FPS f(*this), g(r); g.shrink(); mint coeff = g.back().inverse(); for (auto &x : g) x *= coeff; int deg = (int)f.size() - (int)g.size() + 1; int gs = g.size(); FPS quo(deg); for (int i = deg - 1; i >= 0; i--) { quo[i] = f[i + gs - 1]; for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j]; } *this = quo * coeff; this->resize(n, mint(0)); return *this; } return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev(); } FPS &operator%=(const FPS &r) { *this -= *this / r * r; shrink(); return *this; } FPS operator+(const FPS &r) const { return FPS(*this) += r; } FPS operator+(const mint &v) const { return FPS(*this) += v; } FPS operator-(const FPS &r) const { return FPS(*this) -= r; } FPS operator-(const mint &v) const { return FPS(*this) -= v; } FPS operator*(const FPS &r) const { return FPS(*this) *= r; } FPS operator*(const mint &v) const { return FPS(*this) *= v; } FPS operator/(const FPS &r) const { return FPS(*this) /= r; } FPS operator%(const FPS &r) const { return FPS(*this) %= r; } FPS operator-() const { FPS ret(this->size()); for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i]; return ret; } void shrink() { while (this->size() && this->back() == mint(0)) this->pop_back(); } FPS rev() const { FPS ret(*this); reverse(begin(ret), end(ret)); return ret; } FPS dot(FPS r) const { FPS ret(min(this->size(), r.size())); for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i]; return ret; } FPS pre(int sz) const { return FPS(begin(*this), begin(*this) + min((int)this->size(), sz)); } FPS operator>>(int sz) const { if ((int)this->size() <= sz) return {}; FPS ret(*this); ret.erase(ret.begin(), ret.begin() + sz); return ret; } FPS operator<<(int sz) const { FPS ret(*this); ret.insert(ret.begin(), sz, mint(0)); return ret; } FPS diff() const { const int n = (int)this->size(); FPS ret(max(0, n - 1)); mint one(1), coeff(1); for (int i = 1; i < n; i++) { ret[i - 1] = (*this)[i] * coeff; coeff += one; } return ret; } FPS integral() const { const int n = (int)this->size(); FPS ret(n + 1); ret[0] = mint(0); if (n > 0) ret[1] = mint(1); auto mod = mint::get_mod(); for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i); for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i]; return ret; } mint eval(mint x) const { mint r = 0, w = 1; for (auto &v : *this) r += w * v, w *= x; return r; } FPS log(int deg = -1) const { assert((*this)[0] == mint(1)); if (deg == -1) deg = (int)this->size(); return (this->diff() * this->inv(deg)).pre(deg - 1).integral(); } FPS pow(int64_t k, int deg = -1) const { const int n = (int)this->size(); if (deg == -1) deg = n; for (int i = 0; i < n; i++) { if ((*this)[i] != mint(0)) { if (i * k > deg) return FPS(deg, mint(0)); mint rev = mint(1) / (*this)[i]; FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg) * ((*this)[i].pow(k)); ret = (ret << (i * k)).pre(deg); if ((int)ret.size() < deg) ret.resize(deg, mint(0)); return ret; } } return FPS(deg, mint(0)); } static void *ntt_ptr; static void set_fft(); FPS &operator*=(const FPS &r); void ntt(); void intt(); void ntt_doubling(); static int ntt_pr(); FPS inv(int deg = -1) const; FPS exp(int deg = -1) const; }; template <typename mint> void *FormalPowerSeries<mint>::ntt_ptr = nullptr; /** * @brief 多項式/形式的冪級数ライブラリ * @docs docs/fps/formal-power-series.md */ template <typename mint> void FormalPowerSeries<mint>::set_fft() { if (!ntt_ptr) ntt_ptr = new NTT<mint>; } template <typename mint> FormalPowerSeries<mint>& FormalPowerSeries<mint>::operator*=( const FormalPowerSeries<mint>& r) { if (this->empty() || r.empty()) { this->clear(); return *this; } set_fft(); auto ret = static_cast<NTT<mint>*>(ntt_ptr)->multiply(*this, r); return *this = FormalPowerSeries<mint>(ret.begin(), ret.end()); } template <typename mint> void FormalPowerSeries<mint>::ntt() { set_fft(); static_cast<NTT<mint>*>(ntt_ptr)->ntt(*this); } template <typename mint> void FormalPowerSeries<mint>::intt() { set_fft(); static_cast<NTT<mint>*>(ntt_ptr)->intt(*this); } template <typename mint> void FormalPowerSeries<mint>::ntt_doubling() { set_fft(); static_cast<NTT<mint>*>(ntt_ptr)->ntt_doubling(*this); } template <typename mint> int FormalPowerSeries<mint>::ntt_pr() { set_fft(); return static_cast<NTT<mint>*>(ntt_ptr)->pr; } template <typename mint> FormalPowerSeries<mint> FormalPowerSeries<mint>::inv(int deg) const { assert((*this)[0] != mint(0)); if (deg == -1) deg = (int)this->size(); FormalPowerSeries<mint> res(deg); res[0] = {mint(1) / (*this)[0]}; for (int d = 1; d < deg; d <<= 1) { FormalPowerSeries<mint> f(2 * d), g(2 * d); for (int j = 0; j < min((int)this->size(), 2 * d); j++) f[j] = (*this)[j]; for (int j = 0; j < d; j++) g[j] = res[j]; f.ntt(); g.ntt(); for (int j = 0; j < 2 * d; j++) f[j] *= g[j]; f.intt(); for (int j = 0; j < d; j++) f[j] = 0; f.ntt(); for (int j = 0; j < 2 * d; j++) f[j] *= g[j]; f.intt(); for (int j = d; j < min(2 * d, deg); j++) res[j] = -f[j]; } return res.pre(deg); } template <typename mint> FormalPowerSeries<mint> FormalPowerSeries<mint>::exp(int deg) const { using fps = FormalPowerSeries<mint>; assert((*this).size() == 0 || (*this)[0] == mint(0)); if (deg == -1) deg = this->size(); fps inv; inv.reserve(deg + 1); inv.push_back(mint(0)); inv.push_back(mint(1)); auto inplace_integral = [&](fps& F) -> void { const int n = (int)F.size(); auto mod = mint::get_mod(); while ((int)inv.size() <= n) { int i = inv.size(); inv.push_back((-inv[mod % i]) * (mod / i)); } F.insert(begin(F), mint(0)); for (int i = 1; i <= n; i++) F[i] *= inv[i]; }; auto inplace_diff = [](fps& F) -> void { if (F.empty()) return; F.erase(begin(F)); mint coeff = 1, one = 1; for (int i = 0; i < (int)F.size(); i++) { F[i] *= coeff; coeff += one; } }; fps b{1, 1 < (int)this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1}; for (int m = 2; m < deg; m *= 2) { auto y = b; y.resize(2 * m); y.ntt(); z1 = z2; fps z(m); for (int i = 0; i < m; ++i) z[i] = y[i] * z1[i]; z.intt(); fill(begin(z), begin(z) + m / 2, mint(0)); z.ntt(); for (int i = 0; i < m; ++i) z[i] *= -z1[i]; z.intt(); c.insert(end(c), begin(z) + m / 2, end(z)); z2 = c; z2.resize(2 * m); z2.ntt(); fps x(begin(*this), begin(*this) + min<int>(this->size(), m)); x.resize(m); inplace_diff(x); x.push_back(mint(0)); x.ntt(); for (int i = 0; i < m; ++i) x[i] *= y[i]; x.intt(); x -= b.diff(); x.resize(2 * m); for (int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = mint(0); x.ntt(); for (int i = 0; i < 2 * m; ++i) x[i] *= z2[i]; x.intt(); x.pop_back(); inplace_integral(x); for (int i = m; i < min<int>(this->size(), 2 * m); ++i) x[i] += (*this)[i]; fill(begin(x), begin(x) + m, mint(0)); x.ntt(); for (int i = 0; i < 2 * m; ++i) x[i] *= y[i]; x.intt(); b.insert(end(b), begin(x) + m, end(x)); } return fps{begin(b), begin(b) + deg}; } /** * @brief NTT mod用FPSライブラリ * @docs docs/fps/ntt-friendly-fps.md */ template <uint32_t mod> struct LazyMontgomeryModInt { using mint = LazyMontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 ret = mod; for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret; return ret; } static constexpr u32 r = get_r(); static constexpr u32 n2 = -u64(mod) % mod; static_assert(r * mod == 1, "invalid, r * mod != 1"); static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30"); static_assert((mod & 1) == 1, "invalid, mod % 2 == 0"); u32 a; constexpr LazyMontgomeryModInt() : a(0) {} constexpr LazyMontgomeryModInt(const int64_t &b) : a(reduce(u64(b % mod + mod) * n2)){}; static constexpr u32 reduce(const u64 &b) { return (b + u64(u32(b) * u32(-r)) * mod) >> 32; } constexpr mint &operator+=(const mint &b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } constexpr mint &operator-=(const mint &b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } constexpr mint &operator*=(const mint &b) { a = reduce(u64(a) * b.a); return *this; } constexpr mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } constexpr mint operator+(const mint &b) const { return mint(*this) += b; } constexpr mint operator-(const mint &b) const { return mint(*this) -= b; } constexpr mint operator*(const mint &b) const { return mint(*this) *= b; } constexpr mint operator/(const mint &b) const { return mint(*this) /= b; } constexpr bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } constexpr bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } constexpr mint operator-() const { return mint() - mint(*this); } constexpr mint pow(u64 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } constexpr mint inverse() const { return pow(mod - 2); } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { int64_t t; is >> t; b = LazyMontgomeryModInt<mod>(t); return (is); } constexpr u32 get() const { u32 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static constexpr u32 get_mod() { return mod; } }; template <typename T> struct Binomial { vector<T> f, g, h; Binomial(int MAX = 0) : f(1, T(1)), g(1, T(1)), h(1, T(1)) { while (MAX >= (int)f.size()) extend(); } void extend() { int n = f.size(); int m = n * 2; f.resize(m); g.resize(m); h.resize(m); for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i); g[m - 1] = f[m - 1].inverse(); h[m - 1] = g[m - 1] * f[m - 2]; for (int i = m - 2; i >= n; i--) { g[i] = g[i + 1] * T(i + 1); h[i] = g[i] * f[i - 1]; } } T fac(int i) { if (i < 0) return T(0); while (i >= (int)f.size()) extend(); return f[i]; } T finv(int i) { if (i < 0) return T(0); while (i >= (int)g.size()) extend(); return g[i]; } T inv(int i) { if (i < 0) return -inv(-i); while (i >= (int)h.size()) extend(); return h[i]; } T C(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); return fac(n) * finv(n - r) * finv(r); } inline T operator()(int n, int r) { return C(n, r); } template <typename I> T multinomial(const vector<I>& r) { static_assert(is_integral<I>::value == true); int n = 0; for (auto& x : r) { if(x < 0) return T(0); n += x; } T res = fac(n); for (auto& x : r) res *= finv(x); return res; } template <typename I> T operator()(const vector<I>& r) { return multinomial(r); } T C_naive(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); T ret = T(1); r = min(r, n - r); for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--); return ret; } T P(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); return fac(n) * finv(n - r); } T H(int n, int r) { if (n < 0 || r < 0) return T(0); return r == 0 ? 1 : C(n + r - 1, r); } }; __attribute__((target("sse4.2"))) inline __m128i my128_mullo_epu32( const __m128i &a, const __m128i &b) { return _mm_mullo_epi32(a, b); } __attribute__((target("sse4.2"))) inline __m128i my128_mulhi_epu32( const __m128i &a, const __m128i &b) { __m128i a13 = _mm_shuffle_epi32(a, 0xF5); __m128i b13 = _mm_shuffle_epi32(b, 0xF5); __m128i prod02 = _mm_mul_epu32(a, b); __m128i prod13 = _mm_mul_epu32(a13, b13); __m128i prod = _mm_unpackhi_epi64(_mm_unpacklo_epi32(prod02, prod13), _mm_unpackhi_epi32(prod02, prod13)); return prod; } __attribute__((target("sse4.2"))) inline __m128i montgomery_mul_128( const __m128i &a, const __m128i &b, const __m128i &r, const __m128i &m1) { return _mm_sub_epi32( _mm_add_epi32(my128_mulhi_epu32(a, b), m1), my128_mulhi_epu32(my128_mullo_epu32(my128_mullo_epu32(a, b), r), m1)); } __attribute__((target("sse4.2"))) inline __m128i montgomery_add_128( const __m128i &a, const __m128i &b, const __m128i &m2, const __m128i &m0) { __m128i ret = _mm_sub_epi32(_mm_add_epi32(a, b), m2); return _mm_add_epi32(_mm_and_si128(_mm_cmpgt_epi32(m0, ret), m2), ret); } __attribute__((target("sse4.2"))) inline __m128i montgomery_sub_128( const __m128i &a, const __m128i &b, const __m128i &m2, const __m128i &m0) { __m128i ret = _mm_sub_epi32(a, b); return _mm_add_epi32(_mm_and_si128(_mm_cmpgt_epi32(m0, ret), m2), ret); } __attribute__((target("avx2"))) inline __m256i my256_mullo_epu32( const __m256i &a, const __m256i &b) { return _mm256_mullo_epi32(a, b); } __attribute__((target("avx2"))) inline __m256i my256_mulhi_epu32( const __m256i &a, const __m256i &b) { __m256i a13 = _mm256_shuffle_epi32(a, 0xF5); __m256i b13 = _mm256_shuffle_epi32(b, 0xF5); __m256i prod02 = _mm256_mul_epu32(a, b); __m256i prod13 = _mm256_mul_epu32(a13, b13); __m256i prod = _mm256_unpackhi_epi64(_mm256_unpacklo_epi32(prod02, prod13), _mm256_unpackhi_epi32(prod02, prod13)); return prod; } __attribute__((target("avx2"))) inline __m256i montgomery_mul_256( const __m256i &a, const __m256i &b, const __m256i &r, const __m256i &m1) { return _mm256_sub_epi32( _mm256_add_epi32(my256_mulhi_epu32(a, b), m1), my256_mulhi_epu32(my256_mullo_epu32(my256_mullo_epu32(a, b), r), m1)); } __attribute__((target("avx2"))) inline __m256i montgomery_add_256( const __m256i &a, const __m256i &b, const __m256i &m2, const __m256i &m0) { __m256i ret = _mm256_sub_epi32(_mm256_add_epi32(a, b), m2); return _mm256_add_epi32(_mm256_and_si256(_mm256_cmpgt_epi32(m0, ret), m2), ret); } __attribute__((target("avx2"))) inline __m256i montgomery_sub_256( const __m256i &a, const __m256i &b, const __m256i &m2, const __m256i &m0) { __m256i ret = _mm256_sub_epi32(a, b); return _mm256_add_epi32(_mm256_and_si256(_mm256_cmpgt_epi32(m0, ret), m2), ret); } namespace Gauss { constexpr int MAT_SIZE = 400; uint32_t a_buf_[MAT_SIZE][MAT_SIZE] __attribute__((aligned(64))); // return value: (rank, (-1) ^ (number of swap time)) template <typename mint> __attribute__((target("avx2"))) pair<int, mint> GaussianElimination( const vector<vector<mint>> &m, int LinearEquation = false) { mint(&a)[MAT_SIZE][MAT_SIZE] = *reinterpret_cast<mint(*)[MAT_SIZE][MAT_SIZE]>(a_buf_); int H = m.size(), W = m[0].size(), rank = 0; mint det = 1; for (int i = 0; i < H; i++) for (int j = 0; j < W; j++) a[i][j].a = m[i][j].a; __m256i r = _mm256_set1_epi32(mint::r); __m256i m0 = _mm256_set1_epi32(0); __m256i m1 = _mm256_set1_epi32(mint::get_mod()); __m256i m2 = _mm256_set1_epi32(mint::get_mod() << 1); for (int j = 0; j < (LinearEquation ? (W - 1) : W); j++) { // find basis if (rank == H) break; int idx = -1; for (int i = rank; i < H; i++) { if (a[i][j].get() != 0) { idx = i; break; } } if (idx == -1) { det = 0; continue; } // swap if (rank != idx) { det = -det; for (int l = j; l < W; l++) swap(a[rank][l], a[idx][l]); } det *= a[rank][j]; // normalize if (LinearEquation) { if (a[rank][j].get() != 1) { mint coeff = a[rank][j].inverse(); __m256i COEFF = _mm256_set1_epi32(coeff.a); for (int i = j / 8 * 8; i < W; i += 8) { __m256i R = _mm256_load_si256((__m256i *)(a[rank] + i)); __m256i RmulC = montgomery_mul_256(R, COEFF, r, m1); _mm256_store_si256((__m256i *)(a[rank] + i), RmulC); } } } // elimination for (int k = (LinearEquation ? 0 : rank + 1); k < H; k++) { if (k == rank) continue; if (a[k][j].get() != 0) { mint coeff = a[k][j] / a[rank][j]; __m256i COEFF = _mm256_set1_epi32(coeff.a); for (int i = j / 8 * 8; i < W; i += 8) { __m256i R = _mm256_load_si256((__m256i *)(a[rank] + i)); __m256i K = _mm256_load_si256((__m256i *)(a[k] + i)); __m256i RmulC = montgomery_mul_256(R, COEFF, r, m1); __m256i KmnsR = montgomery_sub_256(K, RmulC, m2, m0); _mm256_store_si256((__m256i *)(a[k] + i), KmnsR); } } } rank++; } return {rank, det}; } // calculate determinant template <typename mint> mint determinant(const vector<vector<mint>> &mat) { return GaussianElimination(mat).second; } // return V<V<mint>> // 0 column ... one of solutions // 1 ~ (W - rank) column ... bases // if not exist, return empty vector template <typename mint> vector<vector<mint>> LinearEquation(vector<vector<mint>> A, vector<mint> B) { int H = A.size(), W = A[0].size(); for (int i = 0; i < H; i++) A[i].push_back(B[i]); auto p = GaussianElimination(A, true); mint(&a)[MAT_SIZE][MAT_SIZE] = *reinterpret_cast<mint(*)[MAT_SIZE][MAT_SIZE]>(a_buf_); int rank = p.first; // check if solutions exist for (int i = rank; i < H; ++i) if (a[i][W] != 0) return vector<vector<mint>>{}; vector<vector<mint>> res(1, vector<mint>(W)); vector<int> pivot(W, -1); for (int i = 0, j = 0; i < rank; ++i) { while (a[i][j] == 0) ++j; res[0][j] = a[i][W], pivot[j] = i; } for (int j = 0; j < W; ++j) { if (pivot[j] == -1) { vector<mint> x(W); x[j] = 1; for (int k = 0; k < j; ++k) if (pivot[k] != -1) x[k] = -a[pivot[k]][j]; res.push_back(x); } } return res; } } // namespace Gauss using Gauss::determinant; using Gauss::LinearEquation; template <typename mint> struct ProductTree { using fps = FormalPowerSeries<mint>; const vector<mint> &xs; vector<fps> buf; int N, xsz; vector<int> l, r; ProductTree(const vector<mint> &xs_) : xs(xs_), xsz(xs.size()) { N = 1; while (N < (int)xs.size()) N *= 2; buf.resize(2 * N); l.resize(2 * N, xs.size()); r.resize(2 * N, xs.size()); fps::set_fft(); if (fps::ntt_ptr == nullptr) build(); else build_ntt(); } void build() { for (int i = 0; i < xsz; i++) { l[i + N] = i; r[i + N] = i + 1; buf[i + N] = {-xs[i], 1}; } for (int i = N - 1; i > 0; i--) { l[i] = l[(i << 1) | 0]; r[i] = r[(i << 1) | 1]; if (buf[(i << 1) | 0].empty()) continue; else if (buf[(i << 1) | 1].empty()) buf[i] = buf[(i << 1) | 0]; else buf[i] = buf[(i << 1) | 0] * buf[(i << 1) | 1]; } } void build_ntt() { fps f; f.reserve(N * 2); for (int i = 0; i < xsz; i++) { l[i + N] = i; r[i + N] = i + 1; buf[i + N] = {-xs[i] + 1, -xs[i] - 1}; } for (int i = N - 1; i > 0; i--) { l[i] = l[(i << 1) | 0]; r[i] = r[(i << 1) | 1]; if (buf[(i << 1) | 0].empty()) continue; else if (buf[(i << 1) | 1].empty()) buf[i] = buf[(i << 1) | 0]; else if (buf[(i << 1) | 0].size() == buf[(i << 1) | 1].size()) { buf[i] = buf[(i << 1) | 0]; f.clear(); copy(begin(buf[(i << 1) | 1]), end(buf[(i << 1) | 1]), back_inserter(f)); buf[i].ntt_doubling(); f.ntt_doubling(); for (int j = 0; j < (int)buf[i].size(); j++) buf[i][j] *= f[j]; } else { buf[i] = buf[(i << 1) | 0]; f.clear(); copy(begin(buf[(i << 1) | 1]), end(buf[(i << 1) | 1]), back_inserter(f)); buf[i].ntt_doubling(); f.intt(); f.resize(buf[i].size(), mint(0)); f.ntt(); for (int j = 0; j < (int)buf[i].size(); j++) buf[i][j] *= f[j]; } } for (int i = 0; i < 2 * N; i++) { buf[i].intt(); buf[i].shrink(); } } }; template <typename mint> vector<mint> InnerMultipointEvaluation(const FormalPowerSeries<mint> &f, const vector<mint> &xs, const ProductTree<mint> &ptree) { using fps = FormalPowerSeries<mint>; vector<mint> ret; ret.reserve(xs.size()); auto rec = [&](auto self, fps a, int idx) { if (ptree.l[idx] == ptree.r[idx]) return; a %= ptree.buf[idx]; if ((int)a.size() <= 64) { for (int i = ptree.l[idx]; i < ptree.r[idx]; i++) ret.push_back(a.eval(xs[i])); return; } self(self, a, (idx << 1) | 0); self(self, a, (idx << 1) | 1); }; rec(rec, f, 1); return ret; } template <typename mint> vector<mint> MultipointEvaluation(const FormalPowerSeries<mint> &f, const vector<mint> &xs) { if(f.empty() || xs.empty()) return vector<mint>(xs.size(), mint(0)); return InnerMultipointEvaluation(f, xs, ProductTree<mint>(xs)); } /** * @brief Multipoint Evaluation */ template <class mint> FormalPowerSeries<mint> PolynomialInterpolation(const vector<mint> &xs, const vector<mint> &ys) { using fps = FormalPowerSeries<mint>; assert(xs.size() == ys.size()); ProductTree<mint> ptree(xs); fps w = ptree.buf[1].diff(); vector<mint> vs = InnerMultipointEvaluation<mint>(w, xs, ptree); auto rec = [&](auto self, int idx) -> fps { if (idx >= ptree.N) { if (idx - ptree.N < (int)xs.size()) return {ys[idx - ptree.N] / vs[idx - ptree.N]}; else return {mint(1)}; } if (ptree.buf[idx << 1 | 0].empty()) return {}; else if (ptree.buf[idx << 1 | 1].empty()) return self(self, idx << 1 | 0); return self(self, idx << 1 | 0) * ptree.buf[idx << 1 | 1] + self(self, idx << 1 | 1) * ptree.buf[idx << 1 | 0]; }; return rec(rec, 1); } // #include "fps/arbitrary-fps.hpp" // template <typename mint> FormalPowerSeries<mint> PolynomialMatrixDeterminant( const vector<vector<FormalPowerSeries<mint>>> &m) { int N = m.size(); int deg = 0; for (int i = 0; i < N; ++i) deg += max<int>(1, m[i][i].size()) - 1; vector<mint> xs(deg + 1); vector<mint> ys(deg + 1); vector<vector<mint>> M(N,vector<mint>(N)); for (int x = 0; x <= deg; x++) { xs[x] = x; for (int i = 0; i < N; ++i) for (int j = 0; j < N; ++j) M[i][j] = m[i][j].eval(x); ys[x] = determinant(M); } return PolynomialInterpolation<mint>(xs, ys); } using namespace Nyaan; using mint = LazyMontgomeryModInt<998244353>; // using mint = LazyMontgomeryModInt<1000000007>; using vm = vector<mint>; using vvm = vector<vm>; Binomial<mint> C; using fps = FormalPowerSeries<mint>; using namespace Nyaan; void q() { ini(N); //int N=400; vvi M0(N, vi(N)), M1(N, vi(N)); in(M0, M1); //rep(i,N)rep(j,N)M0[i][j]=M1[i][j]=i*N+j; V<V<fps>> M(N, V<fps>(N)); rep(i, N) rep(j, N) M[i][j] = fps{M0[i][j], M1[i][j]}; out(PolynomialMatrixDeterminant<mint>(M)); } void Nyaan::solve() { int T = 1; // in(T); while (T--) q(); }