結果
問題 | No.1907 DETERMINATION |
ユーザー | TKTYI |
提出日時 | 2022-04-15 22:39:15 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 10,754 bytes |
コンパイル時間 | 4,883 ms |
コンパイル使用メモリ | 238,536 KB |
実行使用メモリ | 141,760 KB |
最終ジャッジ日時 | 2024-12-25 01:44:12 |
合計ジャッジ時間 | 315,036 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
8,704 KB |
testcase_01 | AC | 2 ms
8,576 KB |
testcase_02 | AC | 3 ms
8,576 KB |
testcase_03 | TLE | - |
testcase_04 | TLE | - |
testcase_05 | TLE | - |
testcase_06 | TLE | - |
testcase_07 | TLE | - |
testcase_08 | TLE | - |
testcase_09 | TLE | - |
testcase_10 | TLE | - |
testcase_11 | TLE | - |
testcase_12 | TLE | - |
testcase_13 | TLE | - |
testcase_14 | TLE | - |
testcase_15 | TLE | - |
testcase_16 | TLE | - |
testcase_17 | TLE | - |
testcase_18 | TLE | - |
testcase_19 | TLE | - |
testcase_20 | TLE | - |
testcase_21 | TLE | - |
testcase_22 | TLE | - |
testcase_23 | TLE | - |
testcase_24 | TLE | - |
testcase_25 | TLE | - |
testcase_26 | TLE | - |
testcase_27 | TLE | - |
testcase_28 | TLE | - |
testcase_29 | TLE | - |
testcase_30 | TLE | - |
testcase_31 | TLE | - |
testcase_32 | TLE | - |
testcase_33 | TLE | - |
testcase_34 | TLE | - |
testcase_35 | TLE | - |
testcase_36 | TLE | - |
testcase_37 | TLE | - |
testcase_38 | TLE | - |
testcase_39 | TLE | - |
testcase_40 | TLE | - |
testcase_41 | TLE | - |
testcase_42 | TLE | - |
testcase_43 | TLE | - |
testcase_44 | TLE | - |
testcase_45 | TLE | - |
testcase_46 | TLE | - |
testcase_47 | TLE | - |
testcase_48 | TLE | - |
testcase_49 | TLE | - |
testcase_50 | TLE | - |
testcase_51 | TLE | - |
testcase_52 | TLE | - |
testcase_53 | TLE | - |
testcase_54 | TLE | - |
testcase_55 | TLE | - |
testcase_56 | TLE | - |
testcase_57 | TLE | - |
testcase_58 | TLE | - |
testcase_59 | TLE | - |
testcase_60 | TLE | - |
testcase_61 | TLE | - |
testcase_62 | TLE | - |
testcase_63 | TLE | - |
testcase_64 | AC | 2 ms
5,248 KB |
testcase_65 | AC | 2 ms
5,248 KB |
testcase_66 | AC | 3 ms
135,552 KB |
ソースコード
#include <bits/stdc++.h> #include <atcoder/all> using namespace std; using namespace atcoder; typedef long long int ll; typedef long double ld; #define FOR(i,l,r) for(ll i=l;i<r;i++) #define REP(i,n) FOR(i,0,n) #define RFOR(i,l,r) for(ll i=r-1;i>=l;i--) #define RREP(i,n) RFOR(i,0,n) #define ALL(x) x.begin(),x.end() #define PA pair<ll,ll> #define F first #define S second #define BS(A,x) binary_search(ALL(A),x) #define LB(A,x) (ll)(lower_bound(ALL(A),x)-A.begin()) #define UB(A,x) (ll)(upper_bound(ALL(A),x)-A.begin()) #define COU(A,x) (UB(A,x)-LB(A,x)) template<typename T>using min_priority_queue=priority_queue<T,vector<T>,greater<T>>; //using mint=modint1000000007; using mint=modint998244353; void chmax(ll&a,ll b){a=max(a,b);} void chmin(ll&a,ll b){a=min(a,b);} void print(vector<ll>A){REP(i,A.size()){if(i)cout<<" ";cout<<A[i];}cout<<endl;} ld dist(ld x1,ld y1,ld x2,ld y2){return sqrtl((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));} namespace MatrixLib { class print_format_error: public std::exception { virtual const char* what() const noexcept { return "Error: print() method cannot print these values because of unsupported!"; } }; class matrix_product_error: public std::exception { virtual const char* what() const noexcept { return "Error: Impossible to calculate matrix product!"; } }; class determinant_error: public std::exception { virtual const char* what() const noexcept { return "Error: Impossible to calculate determinant!"; } }; class inversion_error: public std::exception { virtual const char* what() const noexcept { return "Error: Impossible to calculate inversion!"; } }; /*** 二次元行列のライブラリMatrix ***/ template <typename T> class Matrix { private: vector<vector<T>> A; T __cofactor(const vector<vector<T>>& coA) const { /* 各余因子の計算を再帰的にする */ if (coA.size() == 1) return coA[0][0]; if (coA.size() == 2) { return coA[0][0]*coA[1][1]-coA[0][1]*coA[1][0]; } T res = 0; for (int col2=0; col2<coA.size(); col2++) { vector<vector<T>> cocoA(coA.size()-1); for (int row=1; row<coA.size(); row++) { for (int col=0; col<coA.size(); col++) { if (col2==col) continue; cocoA[row-1].emplace_back(coA[row][col]); } } if (!(col2&1)) res += coA[0][col2] * __cofactor(cocoA); else res -= coA[0][col2] * __cofactor(cocoA); } return res; } public: size_t row; size_t col; Matrix(size_t row=1, size_t col=1) { this->row = row; this->col = col; this->A.resize(row); for(size_t i=0; i<row; i++) this->A[i].resize(col); } vector<T>& operator[](const size_t i) { return this->A[i]; } Matrix& operator+=(Matrix other) { for(size_t i=0; i<this->row; i++) { for(size_t j=0; j<this->col; j++) { this->A[i][j] += other[i][j]; } } return *this; } Matrix operator+(const Matrix other) const { return Matrix(*this) += other; } Matrix& operator+=(const double a) { /* 各要素にaを足す */ for (size_t i=0; i<this->row; i++) { for (size_t j=0; j<this->col; j++) { this->A[i][j] += a; } } return *this; } Matrix operator+(const double a) const { return Matrix(*this) += a; } Matrix& operator-=(Matrix other) { for(size_t i=0; i<this->row; i++) { for(size_t j=0; j<this->col; j++) { this->A[i][j] -= other[i][j]; } } return *this; } Matrix operator-(const Matrix other) const { return Matrix(*this) -= other; } Matrix operator-() const { Matrix res(this->row, this->col); for (size_t i=0; i<this->row; i++) { for (size_t j=0; j<this->col; j++) { res[i][j] = -this->A[i][j]; } } return res; } Matrix& operator-=(const double a) { /* 各要素にaを引く */ for (size_t i=0; i<this->row; i++) { for (size_t j=0; j<this->col; j++) { this->A[i][j] -= a; } } return *this; } Matrix operator-(const double a) const { return Matrix(*this) -= a; } Matrix& operator*=(Matrix other) { /* NxN行列 x NxN行列 の積を求める */ if (!(this->row==this->col && other.row==other.col && this->row==other.row)) throw matrix_product_error(); vector<vector<T>> res(this->row, vector<T>(this->col, 0)); for(size_t i=0; i<other.row; i++) { for (size_t j=0; j<this->col; j++) { for (size_t k=0; k<this->col; k++) { res[i][j] += this->A[i][k]*other[k][j]; } } } this->A = res; return *this; } Matrix operator*(Matrix other) const { /* ixk行列 * kxj行列 の積を求める */ if (this->col!=other.row) throw matrix_product_error(); Matrix<T> res(this->row, other.col); for (size_t i=0; i<this->row; i++) { for (size_t j=0; j<other.col; j++) { for (size_t k=0; k<this->col; k++) { res[i][j] += this->A[i][k]*other[k][j]; } } } return res; } Matrix& operator*=(const double a) { /* 各要素にaをかける */ for (size_t i=0; i<this->row; i++) { for (size_t j=0; j<this->col; j++) { this->A[i][j] *= a; } } return *this; } Matrix operator*(const double a) const { return Matrix(*this) *= a; } void print() { /* 行列の状態を表示する */ string format; if (typeid(T)==typeid(int)) format = "%*d"s; else if (typeid(T)==typeid(unsigned int) || typeid(T)==typeid(unsigned short)) format = "%*u"s; else if (typeid(T)==typeid(long)) format = "%*ld"s; else if (typeid(T)==typeid(unsigned long)) format = "%*lu"s; else if (typeid(T)==typeid(long long)) format = "%*lld"s; else if (typeid(T)==typeid(unsigned long long)) format = "%*llu"s; else if (typeid(T)==typeid(short)) format = "%*f"s; else if (typeid(T)==typeid(double)) format = "%*lf"s; else if (typeid(T)==typeid(long double)) format = "%*LF"s; else throw print_format_error(); int len = 0; for (size_t i=0; i<this->row; i++) { for (size_t j=0; j<this->col; j++) { string str = to_string(this->A[i][j]); len = max(len, (int)str.size()); } } printf("[["); for (size_t i=0; i<this->row; i++) { for (size_t j=0; j<this->col; j++) { printf(format.c_str(), len, this->A[i][j]); if (j!=this->col-1) printf(", "); else printf("]"); } if (i!=this->row-1) printf(",\n "); else printf("]\n"); } } T det() const { /* 行列式を計算して返す */ if (this->row!=this->col) throw determinant_error(); return this->__cofactor(this->A); } Matrix dot(const Matrix B) const { /* ドット積(内積)計算をする */ return Matrix(*this) * B; } Matrix inv() const { /* 逆行列を返す(掃き出し法) */ if (!(this->row==this->col)) throw inversion_error(); size_t N = this->row; Matrix<T> A = *this; Matrix<T> invA(N, N); for (size_t i=0; i<N; i++) { for (size_t j=0; j<N; j++) { invA[i][j] = (i==j) ? 1 : 0; } } for (size_t i=0; i<N; i++) { T buf = 1/A[i][i]; for (size_t j=0; j<N; j++) { A[i][j] *= buf; invA[i][j] *= buf; } for (size_t j=0; j<N; j++) { if (i!=j) { buf = A[j][i]; for (size_t k=0; k<N; k++) { A[j][k] -= A[i][k]*buf; invA[j][k] -= invA[i][k]*buf; } } } } return invA; } }; } using namespace MatrixLib; int main(){ ll N;cin>>N; Matrix<mint>M0(N,N),M1(N,N); REP(i,N)REP(j,N){ll x;cin>>x;M0[i][j]=x;} REP(i,N)REP(j,N){ll x;cin>>x;M1[i][j]=x;} vector<mint>A(N+1); REP(x,N+1){ Matrix<mint>M(N,N); REP(i,N)REP(j,N)M[i][j]=M0[i][j]+M1[i][j]*x; A[x]=M.det(); } vector<mint>ans(N+1),K(N+1,1); FOR(i,1,N+1)K[i]=i*K[i-1]; REP(i,N+1){ vector<mint>DP(N+1); DP[0]=1; REP(j,N+1)if(i!=j){ RREP(k,N)DP[k+1]=DP[k]-j*DP[k+1]; DP[0]=-j*DP[0]; } REP(j,N+1){ if((N-i)%2)ans[j]-=DP[j]*A[i]/K[N-i]/K[i]; else ans[j]+=DP[j]*A[i]/K[N-i]/K[i]; } } REP(i,N+1)cout<<ans[i].val()<<endl; return 0; }