結果
| 問題 |
No.1907 DETERMINATION
|
| コンテスト | |
| ユーザー |
👑 |
| 提出日時 | 2022-04-15 23:18:44 |
| 言語 | C++17(clang) (17.0.6 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 668 ms / 4,000 ms |
| コード長 | 3,887 bytes |
| コンパイル時間 | 3,074 ms |
| コンパイル使用メモリ | 133,076 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-12-25 02:38:30 |
| 合計ジャッジ時間 | 26,378 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 63 |
ソースコード
#include <algorithm>
#include <cassert>
#include <iostream>
#include <numeric>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
using namespace std;
#include <atcoder/modint>
using mint = atcoder::static_modint<998244353>;
// Upper Hessenberg reduction of square matrices
// Complexity: O(n^3)
// Reference:
// http://www.phys.uri.edu/nigh/NumRec/bookfpdf/f11-5.pdf
template <class Tp> void hessenberg_reduction(std::vector<std::vector<Tp>> &M) {
assert(M.size() == M[0].size());
const int N = M.size();
for (int r = 0; r < N - 2; r++) {
int piv = -1;
for (int j = r + 1; j < N; ++j) if (M[j][r] != 0) {
piv = j;
break;
}
if (piv < 0) continue;
for (int i = 0; i < N; i++) std::swap(M[r + 1][i], M[piv][i]);
for (int i = 0; i < N; i++) std::swap(M[i][r + 1], M[i][piv]);
const auto rinv = Tp(1) / M[r + 1][r];
for (int i = r + 2; i < N; i++) {
const auto n = M[i][r] * rinv;
for (int j = 0; j < N; j++) M[i][j] -= M[r + 1][j] * n;
for (int j = 0; j < N; j++) M[j][r + 1] += M[j][i] * n;
}
}
}
// Characteristic polynomial of matrix M (|xI - M|)
// Complexity: O(n^3)
// R. Rehman, I. C. Ipsen, "La Budde's Method for Computing Characteristic Polynomials," 2011.
template <class Tp> std::vector<Tp> characteristic_poly(std::vector<std::vector<Tp>> &M) {
hessenberg_reduction(M);
const int N = M.size();
std::vector<std::vector<Tp>> p(N + 1); // p[i + 1] = (Characteristic polynomial of i-th leading principal minor)
p[0] = {1};
for (int i = 0; i < N; i++) {
p[i + 1].assign(i + 2, 0);
for (int j = 0; j < i + 1; j++) p[i + 1][j + 1] += p[i][j];
for (int j = 0; j < i + 1; j++) p[i + 1][j] -= p[i][j] * M[i][i];
Tp betas = 1;
for (int j = i - 1; j >= 0; j--) {
betas *= M[j + 1][j];
Tp hb = -M[j][i] * betas;
for (int k = 0; k < j + 1; k++) p[i + 1][k] += hb * p[j][k];
}
}
return p[N];
}
int main() {
int N, a, b = 0;
mint prod = 1;
cin >> N;
vector mat0(N, vector<mint>(N));
vector mat1(N, vector<mint>(N));
for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) { cin >> a; mat0[i][j] = a; }
for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) { cin >> a; mat1[i][j] = a; }
for (int i = 0; i < N; ++i) {
int piv = -1;
for (int h = i; h < N; ++h) {
if (mat1[h][i] != 0) piv = h;
}
if (piv < 0) {
for (int h = 0; h < i; h++) {
for (int hh = 0; hh < N; hh++) mat0[hh][i] -= mat0[hh][h] * mat1[h][i];
mat1[h][i] = 0;
}
b++;
for (int h = 0; h < N; h++) {
mat1[h][i] = mat0[h][i];
mat0[h][i] = 0;
}
if (b <= N) {
i--;
continue;
}
for (int h = 0; h <= N; h++) cout << "0\n";
return 0;
}
assert(piv >= i);
swap(mat0[i], mat0[piv]);
swap(mat1[i], mat1[piv]);
if (i != piv) {
for (int w = 0; w < N; ++w) {
mat0[i][w] *= -1;
mat1[i][w] *= -1;
}
}
mint inv = mat1[i][i].inv();
prod *= mat1[i][i];
for (int w = 0; w < N; ++w) {
mat0[i][w] *= inv;
mat1[i][w] *= inv;
}
for (int h = 0; h < N; ++h) {
if (h == i) continue;
if (mat1[h][i] == 0) continue;
const mint coeff = mat1[h][i];
for (int w = 0; w < N; ++w) {
mat1[h][w] -= coeff * mat1[i][w];
mat0[h][w] -= coeff * mat0[i][w];
}
}
}
for(auto &v : mat0) for (auto &x : v) x = -x;
auto det_poly = characteristic_poly<mint>(mat0);
for (int i = b; i <= N; i++) cout << (det_poly[i] * prod).val() << '\n';
for (int i = N + 1; i <= N + b; i++) cout << "0\n";
return 0;
}