結果

問題 No.1907 DETERMINATION
ユーザー Jeroen Op de BeekJeroen Op de Beek
提出日時 2022-04-15 23:19:45
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 30,311 bytes
コンパイル時間 5,935 ms
コンパイル使用メモリ 263,092 KB
実行使用メモリ 171,520 KB
最終ジャッジ日時 2024-12-25 02:43:14
合計ジャッジ時間 254,391 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
116,224 KB
testcase_01 AC 2 ms
10,496 KB
testcase_02 AC 2 ms
10,624 KB
testcase_03 AC 3 ms
10,624 KB
testcase_04 AC 7 ms
10,624 KB
testcase_05 AC 4 ms
103,552 KB
testcase_06 AC 3 ms
10,624 KB
testcase_07 TLE -
testcase_08 TLE -
testcase_09 TLE -
testcase_10 TLE -
testcase_11 TLE -
testcase_12 TLE -
testcase_13 TLE -
testcase_14 TLE -
testcase_15 TLE -
testcase_16 TLE -
testcase_17 TLE -
testcase_18 TLE -
testcase_19 TLE -
testcase_20 TLE -
testcase_21 TLE -
testcase_22 TLE -
testcase_23 TLE -
testcase_24 TLE -
testcase_25 AC 7 ms
10,624 KB
testcase_26 TLE -
testcase_27 TLE -
testcase_28 TLE -
testcase_29 TLE -
testcase_30 AC 8 ms
10,624 KB
testcase_31 TLE -
testcase_32 TLE -
testcase_33 TLE -
testcase_34 TLE -
testcase_35 AC 9 ms
10,624 KB
testcase_36 AC 7 ms
154,240 KB
testcase_37 AC 8 ms
154,112 KB
testcase_38 TLE -
testcase_39 TLE -
testcase_40 TLE -
testcase_41 TLE -
testcase_42 TLE -
testcase_43 TLE -
testcase_44 TLE -
testcase_45 TLE -
testcase_46 TLE -
testcase_47 TLE -
testcase_48 TLE -
testcase_49 TLE -
testcase_50 TLE -
testcase_51 TLE -
testcase_52 AC 2 ms
10,624 KB
testcase_53 TLE -
testcase_54 TLE -
testcase_55 AC 2 ms
10,624 KB
testcase_56 TLE -
testcase_57 TLE -
testcase_58 AC 2,694 ms
18,816 KB
testcase_59 AC 3,992 ms
171,520 KB
testcase_60 AC 3,857 ms
18,944 KB
testcase_61 TLE -
testcase_62 TLE -
testcase_63 TLE -
testcase_64 AC 2 ms
5,248 KB
testcase_65 AC 1 ms
5,248 KB
testcase_66 AC 2 ms
153,344 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp:162:18: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts'
  162 |         void fft(auto *in, point *out, int n, int k = 1) {
      |                  ^~~~
main.cpp:177:30: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts'
  177 |         void mul_slow(vector<auto> &a, const vector<auto> &b) {
      |                              ^~~~
main.cpp:177:53: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts'
  177 |         void mul_slow(vector<auto> &a, const vector<auto> &b) {
      |                                                     ^~~~
main.cpp:722:51: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts'
  722 |         vector<T> eval(vector<poly> &tree, int v, auto l, auto r) { // auxiliary evaluation function
      |                                                   ^~~~
main.cpp:722:59: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts'
  722 |         vector<T> eval(vector<poly> &tree, int v, auto l, auto r) { // auxiliary evaluation function
      |                                                           ^~~~
main.cpp:744:47: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts'
  744 |         poly inter(vector<poly> &tree, int v, auto l, auto r, auto ly, auto ry) { // auxiliary interpolation function
      |                                               ^~~~
main.cpp:744:55: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts'
  744 |         poly inter(vector<poly> &tree, int v, auto l, auto r, auto ly, auto ry) { // auxiliary interpolation function
      |                                                       ^~~~
main.cpp:744:63: warning: use of 'auto' in parameter declaration only available with '-std=c++20' or '-fconcepts'
  744 |   

ソースコード

diff #

#include "bits/stdc++.h"
using namespace std;
#define all(x) begin(x),end(x)
template<typename A, typename B> ostream& operator<<(ostream &os, const pair<A, B> &p) { return os << '(' << p.first << ", " << p.second << ')'; }
template<typename T_container, typename T = typename enable_if<!is_same<T_container, string>::value, typename T_container::value_type>::type> ostream& operator<<(ostream &os, const T_container &v) { string sep; for (const T &x : v) os << sep << x, sep = " "; return os; }
#define debug(a) cerr << "(" << #a << ": " << a << ")\n";
typedef long long ll;
typedef vector<int> vi;
typedef vector<vi> vvi;
typedef pair<int,int> pi;
const int mxN = 1e5+1, oo = 1e9;
#define rep(i,a,b) for(int i=a;i<b;++i)

/* Verified on https://judge.yosupo.jp:
- N = 500'000:
-- Convolution, 607ms (https://judge.yosupo.jp/submission/75115)
-- Convolution (mod 1e9+7), 606ms (https://judge.yosupo.jp/submission/75116)
-- Inv of power series, 976ms (https://judge.yosupo.jp/submission/75117)
-- Exp of power series, 3027ms (https://judge.yosupo.jp/submission/75118)
-- Log of power series, 1626ms (https://judge.yosupo.jp/submission/75119)
-- Pow of power series, 4138ms (https://judge.yosupo.jp/submission/75120)
-- Sqrt of power series, 2166ms (https://judge.yosupo.jp/submission/75121)
-- P(x) -> P(x+a), 756ms (https://judge.yosupo.jp/submission/75122)
-- Division of polynomials, 1140ms (https://judge.yosupo.jp/submission/75124)
- N = 100'000:
-- Multipoint evaluation, 2470ms (https://judge.yosupo.jp/submission/75126)
-- Polynomial interpolation, 2922ms (https://judge.yosupo.jp/submission/75127)
- N = 50'000:
-- Inv of Polynomials, 1752ms (https://judge.yosupo.jp/submission/85478)
- N = 10'000:
-- Find Linear Recurrence, 346ms (https://judge.yosupo.jp/submission/85025)
/////////

The main goal of this library is to implement common polynomial functionality in a
reasonable from competitive programming POV complexity, while also doing it in as
straight-forward way as possible.

Therefore, primary purpose of the library is educational and most of constant-time
optimizations that may significantly harm the code readability were not used.

The library is reasonably fast and generally can be used in most problems where
polynomial operations constitute intended solution. However, it is recommended to
seek out other implementations when the time limit is tight or you really want to
squeeze polynomial-op solution when it is probably not the intended one.
 
*/

#include <bits/stdc++.h>

using namespace std;

namespace algebra {
    const int maxn = 1 << 21;
    const int magic = 250; // threshold for sizes to run the naive algo
    mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); 

    template<typename T>
    T bpow(T x, size_t n) {
        if(n == 0) {
            return T(1);
        } else {
            auto t = bpow(x, n / 2);
            t *= t;
            return n % 2 ? x * t : t;
        }
    }

    template<int m>
    struct modular {
        
        // https://en.wikipedia.org/wiki/Berlekamp-Rabin_algorithm
        // solves x^2 = y (mod m) assuming m is prime in O(log m).
        // returns nullopt if no sol.
        optional<modular> sqrt() const {
            static modular y;
            y = *this;
            if(r == 0) {
                return 0;
            } else if(bpow(y, (m - 1) / 2) != modular(1)) {
                return nullopt;
            } else {
                while(true) {
                    modular z = rng();
                    if(z * z == *this) {
                        return z;
                    }
                    struct lin {
                        modular a, b;
                        lin(modular a, modular b): a(a), b(b) {}
                        lin(modular a): a(a), b(0) {}
                        lin operator * (const lin& t) {
                            return {
                                a * t.a + b * t.b * y,
                                a * t.b + b * t.a
                            };
                        }
                    } x(z, 1); // z + x
                    x = bpow(x, (m - 1) / 2);
                    if(x.b != modular(0)) {
                        return x.b.inv();
                    }
                }
            }
        }
        
        int64_t r;
        modular() : r(0) {}
        modular(int64_t rr) : r(rr) {if(abs(r) >= m) r %= m; if(r < 0) r += m;}
        modular inv() const {return bpow(*this, m - 2);}
        modular operator - () const {return r ? m - r : 0;}
        modular operator * (const modular &t) const {return r * t.r % m;}
        modular operator / (const modular &t) const {return *this * t.inv();}
        modular operator += (const modular &t) {r += t.r; if(r >= m) r -= m; return *this;}
        modular operator -= (const modular &t) {r -= t.r; if(r < 0) r += m; return *this;}
        modular operator + (const modular &t) const {return modular(*this) += t;}
        modular operator - (const modular &t) const {return modular(*this) -= t;}
        modular operator *= (const modular &t) {return *this = *this * t;}
        modular operator /= (const modular &t) {return *this = *this / t;}
        
        bool operator == (const modular &t) const {return r == t.r;}
        bool operator != (const modular &t) const {return r != t.r;}
        
        operator int() const {return r;}
        int64_t rem() const {return 2 * r > m ? r - m : r;}
    };
    
    template<int T>
    istream& operator >> (istream &in, modular<T> &x) {
        return in >> x.r;
    }
    
    template<typename T>
    T fact(int n) {
        static T F[maxn];
        return F[n] ? F[n] : F[n] = n ? fact<T>(n - 1) * T(n) : T(1);
    }
    
    template<typename T>
    T rfact(int n) {
        static T RF[maxn];
        return RF[n] ? RF[n] : RF[n] = T(1) / fact<T>(n);
    }

    namespace fft {
        typedef double ftype;
        typedef complex<ftype> point;

        point w[maxn];
        const ftype pi = acos(-1);
        bool initiated = 0;
        void init() {
            if(!initiated) {
                for(int i = 1; i < maxn; i *= 2) {
                    for(int j = 0; j < i; j++) {
                        w[i + j] = polar(ftype(1), pi * j / i);
                    }
                }
                initiated = 1;
            }
        }
        
        void fft(auto *in, point *out, int n, int k = 1) {
            if(n == 1) {
                *out = *in;
            } else {
                n /= 2;
                fft(in, out, n, 2 * k);
                fft(in + k, out + n, n, 2 * k);
                for(int i = 0; i < n; i++) {
                    auto t = out[i + n] * w[i + n];
                    out[i + n] = out[i] - t;
                    out[i] += t;
                }
            }
        }
        
        void mul_slow(vector<auto> &a, const vector<auto> &b) {
            if(a.empty() || b.empty()) {
                a.clear();
            } else {
                int n = a.size();
                int m = b.size();
                a.resize(n + m - 1);
                for(int k = n + m - 2; k >= 0; k--) {
                    a[k] *= b[0];
                    for(int j = max(k - n + 1, 1); j < min(k + 1, m); j++) {
                        a[k] += a[k - j] * b[j];
                    }
                }
            }
        }
        
        template<typename T>
        void mul(vector<T> &a, vector<T> b) {
            if(min(a.size(), b.size()) < magic) {
                mul_slow(a, b);
                return;
            }
            init();
            static const T split = 1 << 15;
            size_t n = a.size() + b.size() - 1;
            while(__builtin_popcount(n) != 1) {
                n++;
            }
            a.resize(n);
            b.resize(n);
            static point A[maxn], B[maxn];
            static point C[maxn], D[maxn];
            for(size_t i = 0; i < n; i++) {
                A[i] = point(a[i].rem() % split, a[i].rem() / split);
                B[i] = point(b[i].rem() % split, b[i].rem() / split);
            }
            fft(A, C, n); fft(B, D, n);
            for(size_t i = 0; i < n; i++) {
                A[i] = C[i] * (D[i] + conj(D[(n - i) % n]));
                B[i] = C[i] * (D[i] - conj(D[(n - i) % n]));
            }
            fft(A, C, n); fft(B, D, n);
            reverse(C + 1, C + n);
            reverse(D + 1, D + n);
            int t = 2 * n;
            for(size_t i = 0; i < n; i++) {
                T A0 = llround(real(C[i]) / t);
                T A1 = llround(imag(C[i]) / t + imag(D[i]) / t);
                T A2 = llround(real(D[i]) / t);
                a[i] = A0 + A1 * split - A2 * split * split;
            }
        }
    }

    template<typename T>
    struct poly {
        vector<T> a;
        
        void normalize() { // get rid of leading zeroes
            while(!a.empty() && a.back() == T(0)) {
                a.pop_back();
            }
        }
        
        poly(){}
        poly(T a0) : a{a0}{normalize();}
        poly(const vector<T> &t) : a(t){normalize();}
        
        poly operator -() const {
            auto t = *this;
            for(auto &it: t.a) {
                it = -it;
            }
            return t;
        }
        
        poly operator += (const poly &t) {
            a.resize(max(a.size(), t.a.size()));
            for(size_t i = 0; i < t.a.size(); i++) {
                a[i] += t.a[i];
            }
            normalize();
            return *this;
        }
        
        poly operator -= (const poly &t) {
            a.resize(max(a.size(), t.a.size()));
            for(size_t i = 0; i < t.a.size(); i++) {
                a[i] -= t.a[i];
            }
            normalize();
            return *this;
        }
        poly operator + (const poly &t) const {return poly(*this) += t;}
        poly operator - (const poly &t) const {return poly(*this) -= t;}
        
        poly mod_xk(size_t k) const { // get first k coefficients
            return vector<T>(begin(a), begin(a) + min(k, a.size()));
        }
        
        poly mul_xk(size_t k) const { // multiply by x^k
            auto res = a;
            res.insert(begin(res), k, 0);
            return res;
        }
        
        poly div_xk(size_t k) const { // drop first k coefficients
            return vector<T>(begin(a) + min(k, a.size()), end(a));
        }
        
        poly substr(size_t l, size_t r) const { // return mod_xk(r).div_xk(l)
            return vector<T>(
                begin(a) + min(l, a.size()),
                begin(a) + min(r, a.size())
            );
        }
        
        poly inv(size_t n) const { // get inverse series mod x^n
            assert((*this)[0] != T(0));
            poly ans = T(1) / a[0];
            size_t a = 1;
            while(a < n) {
                poly C = (ans * mod_xk(2 * a)).substr(a, 2 * a);
                ans -= (ans * C).mod_xk(a).mul_xk(a);
                a *= 2;
            }
            return ans.mod_xk(n);
        }
        
        poly operator *= (const poly &t) {fft::mul(a, t.a); normalize(); return *this;}
        poly operator * (const poly &t) const {return poly(*this) *= t;}
        
        poly reverse(size_t n) const { // computes x^n A(x^{-1})
            auto res = a;
            res.resize(max(n, res.size()));
            return vector<T>(res.rbegin(), res.rbegin() + n);
        }
        
        poly reverse() const {
            return reverse(deg() + 1);
        }
        
        pair<poly, poly> divmod_slow(const poly &b) const { // when divisor or quotient is small
            vector<T> A(a);
            vector<T> res;
            while(A.size() >= b.a.size()) {
                res.push_back(A.back() / b.a.back());
                if(res.back() != T(0)) {
                    for(size_t i = 0; i < b.a.size(); i++) {
                        A[A.size() - i - 1] -= res.back() * b.a[b.a.size() - i - 1];
                    }
                }
                A.pop_back();
            }
            std::reverse(begin(res), end(res));
            return {res, A};
        }
        bool operator==(const poly& o) const {
            return a==o.a;
        }
        bool operator!=(const poly& o) const {
            return a!=o.a;
        }
        pair<poly, poly> divmod(const poly &b) const { // returns quotiend and remainder of a mod b
            assert(!b.is_zero());
            if(deg() < b.deg()) {
                return {poly{0}, *this};
            }
            int d = deg() - b.deg();
            if(min(d, b.deg()) < magic) {
                return divmod_slow(b);
            }
            poly D = (reverse().mod_xk(d + 1) * b.reverse().inv(d + 1)).mod_xk(d + 1).reverse(d + 1);
            return {D, *this - D * b};
        }
        
        // (ax+b) / (cx+d)
        struct transform {
            poly a, b, c, d;
            transform(poly a, poly b = T(1), poly c = T(1), poly d = T(0)): a(a), b(b), c(c), d(d){}
            
            transform operator *(transform const& t) {
                return {
                    a*t.a + b*t.c, a*t.b + b*t.d,
                    c*t.a + d*t.c, c*t.b + d*t.d
                };
            }
            
            transform adj() {
                return transform(d, -b, -c, a);
            }
            
            auto apply(poly A, poly B) {
                return make_pair(a * A + b * B, c * A + d * B);
            }
        };
        
        // finds a transform that changes A/B to A'/B' such that
        // deg B' is at least 2 times less than deg A
        static transform half_gcd(poly A, poly B) {
            assert(A.deg() >= B.deg());
            int m = (A.deg() + 1) / 2;
            if(B.deg() < m) {
                return {T(1), T(0), T(0), T(1)};
            }
            auto Tr = half_gcd(A.div_xk(m), B.div_xk(m));
            tie(A, B) = Tr.adj().apply(A, B);
            if(B.deg() < m) {
                return Tr;
            }
            auto [ai, R] = A.divmod(B);
            tie(A, B) = make_pair(B, R);
            int k = 2 * m - B.deg();
            auto Ts = half_gcd(A.div_xk(k), B.div_xk(k));
            return Tr * transform(ai) * Ts;
        }
        
        // return a transform that reduces A / B to gcd(A, B) / 0
        static transform full_gcd(poly A, poly B) {
            vector<transform> trs;
            while(!B.is_zero()) {
                if(2 * B.deg() > A.deg()) {
                    trs.push_back(half_gcd(A, B));
                    tie(A, B) = trs.back().adj().apply(A, B);
                } else {
                    auto [a, R] = A.divmod(B);
                    trs.emplace_back(a);
                    tie(A, B) = make_pair(B, R);
                }
            }
            trs.emplace_back(T(1), T(0), T(0), T(1));
            while(trs.size() >= 2) {
                trs[trs.size() - 2] = trs[trs.size() - 2] * trs[trs.size() - 1];
                trs.pop_back();
            }
            return trs.back();
        }
        
        static poly gcd(poly A, poly B) {
            if(A.deg() < B.deg()) {
                return full_gcd(B, A);
            }
            auto Tr = fraction(A, B);
            return Tr.d * A - Tr.b * B;
        }
        
        // Returns the characteristic polynomial
        // of the minimum linear recurrence for the sequence
        poly min_rec(int d = deg()) const {
            auto R1 = mod_xk(d + 1).reverse(d + 1), R2 = xk(d + 1);
            auto Q1 = poly(T(1)), Q2 = poly(T(0));
            while(!R2.is_zero()) {
                auto [a, nR] = R1.divmod(R2); // R1 = a*R2 + nR, deg nR < deg R2
                tie(R1, R2) = make_tuple(R2, nR);
                tie(Q1, Q2) = make_tuple(Q2, Q1 + a * Q2);
                if(R2.deg() < Q2.deg()) {
                    return Q2 / Q2.lead();
                }
            }
            assert(0);
        }
        
        // calculate inv to *this modulo t
        // quadratic complexity
        optional<poly> inv_mod_slow(poly const& t) const {
            auto R1 = *this, R2 = t;
            auto Q1 = poly(T(1)), Q2 = poly(T(0));
            int k = 0;
            while(!R2.is_zero()) {
                k ^= 1;
                auto [a, nR] = R1.divmod(R2);
                tie(R1, R2) = make_tuple(R2, nR);
                tie(Q1, Q2) = make_tuple(Q2, Q1 + a * Q2);
            }
            if(R1.deg() > 0) {
                return nullopt;
            } else {
                return (k ? -Q1 : Q1) / R1[0];
            }
        }
        
        optional<poly> inv_mod(poly const &t) const {
            assert(!t.is_zero());
            if(false && min(deg(), t.deg()) < magic) {
                return inv_mod_slow(t);
            }
            auto A = t, B = *this % t;
            auto Tr = full_gcd(A, B);
            auto g = Tr.d * A - Tr.b * B;
            if(g.deg() != 0) {
                return nullopt;
            }
            return -Tr.b / g[0];
        };
        
        poly operator / (const poly &t) const {return divmod(t).first;}
        poly operator % (const poly &t) const {return divmod(t).second;}
        poly operator /= (const poly &t) {return *this = divmod(t).first;}
        poly operator %= (const poly &t) {return *this = divmod(t).second;}
        poly operator *= (const T &x) {
            for(auto &it: a) {
                it *= x;
            }
            normalize();
            return *this;
        }
        poly operator /= (const T &x) {
            for(auto &it: a) {
                it /= x;
            }
            normalize();
            return *this;
        }
        poly operator * (const T &x) const {return poly(*this) *= x;}
        poly operator / (const T &x) const {return poly(*this) /= x;}
        
        poly conj() const { // A(x) -> A(-x)
            auto res = *this;
            for(int i = 1; i <= deg(); i += 2) {
                res[i] = -res[i];
            }
            return res;
        }
        
        void print(int n) const {
            for(int i = 0; i < n; i++) {
                cout << (*this)[i] << ' ';
            }
            cout << "\n";
        }
        
        void print() const {
            print(deg() + 1);
        }
        
        T eval(T x) const { // evaluates in single point x
            T res(0);
            for(int i = deg(); i >= 0; i--) {
                res *= x;
                res += a[i];
            }
            return res;
        }
        
        T lead() const { // leading coefficient
            assert(!is_zero());
            return a.back();
        }
        
        int deg() const { // degree, -1 for P(x) = 0
            return (int)a.size() - 1;
        }
        
        bool is_zero() const {
            return a.empty();
        }
        
        T operator [](int idx) const {
            return idx < 0 || idx > deg() ? T(0) : a[idx];
        }
        
        T& coef(size_t idx) { // mutable reference at coefficient
            return a[idx];
        }
        

        
        poly deriv() { // calculate derivative
            vector<T> res(deg());
            for(int i = 1; i <= deg(); i++) {
                res[i - 1] = T(i) * a[i];
            }
            return res;
        }
        
        poly integr() { // calculate integral with C = 0
            vector<T> res(deg() + 2);
            for(int i = 0; i <= deg(); i++) {
                res[i + 1] = a[i] / T(i + 1);
            }
            return res;
        }
        
        size_t trailing_xk() const { // Let p(x) = x^k * t(x), return k
            if(is_zero()) {
                return -1;
            }
            int res = 0;
            while(a[res] == T(0)) {
                res++;
            }
            return res;
        }
        
        poly log(size_t n) { // calculate log p(x) mod x^n
            assert(a[0] == T(1));
            return (deriv().mod_xk(n) * inv(n)).integr().mod_xk(n);
        }
        
        poly exp(size_t n) { // calculate exp p(x) mod x^n
            if(is_zero()) {
                return T(1);
            }
            assert(a[0] == T(0));
            poly ans = T(1);
            size_t a = 1;
            while(a < n) {
                poly C = ans.log(2 * a).div_xk(a) - substr(a, 2 * a);
                ans -= (ans * C).mod_xk(a).mul_xk(a);
                a *= 2;
            }
            return ans.mod_xk(n);
        }
        
        poly pow_bin(int64_t k, size_t n) { // O(n log n log k)
            if(k == 0) {
                return poly(1).mod_xk(n);
            } else {
                auto t = pow(k / 2, n);
                t *= t;
                return (k % 2 ? *this * t : t).mod_xk(n);
            }
        }
        
        // O(d * n) with the derivative trick from
        // https://codeforces.com/blog/entry/73947?#comment-581173
        poly pow_dn(int64_t k, size_t n) {
            vector<T> Q(n);
            Q[0] = bpow(a[0], k);
            for(int i = 1; i < (int)n; i++) {
                for(int j = 1; j <= min(deg(), i); j++) {
                    Q[i] += a[j] * Q[i - j] * (T(k) * T(j) - T(i - j));
                }
                Q[i] /= i * a[0];
            }
            return Q;
        }
        
        // calculate p^k(n) mod x^n in O(n log n)
        // might be quite slow due to high constant
        poly pow(int64_t k, size_t n) {
            if(is_zero()) {
                return *this;
            }
            int i = trailing_xk();
            if(i > 0) {
                return i * k >= (int64_t)n ? poly(0) : div_xk(i).pow(k, n - i * k).mul_xk(i * k);
            }
            if(min(deg(), (int)n) <= magic) {
                return pow_dn(k, n);
            }
            if(k <= magic) {
                return pow_bin(k, n);
            }
            T j = a[i];
            poly t = *this / j;
            return bpow(j, k) * (t.log(n) * T(k)).exp(n).mod_xk(n);
        }
        
        // returns nullopt if undefined
        optional<poly> sqrt(size_t n) const {
            if(is_zero()) {
                return *this;
            }
            int i = trailing_xk();
            if(i % 2) {
                return nullopt;
            } else if(i > 0) {
                auto ans = div_xk(i).sqrt(n - i / 2);
                return ans ? ans->mul_xk(i / 2) : ans;
            }
            auto st = (*this)[0].sqrt();
            if(st) {
                poly ans = *st;
                size_t a = 1;
                while(a < n) {
                    a *= 2;
                    ans -= (ans - mod_xk(a) * ans.inv(a)).mod_xk(a) / 2;
                }
                return ans.mod_xk(n);
            }
            return nullopt;
        }
        
        poly mulx(T a) { // component-wise multiplication with a^k
            T cur = 1;
            poly res(*this);
            for(int i = 0; i <= deg(); i++) {
                res.coef(i) *= cur;
                cur *= a;
            }
            return res;
        }
        
        poly mulx_sq(T a) { // component-wise multiplication with a^{k^2}
            T cur = a;
            T total = 1;
            T aa = a * a;
            poly res(*this);
            for(int i = 0; i <= deg(); i++) {
                res.coef(i) *= total;
                total *= cur;
                cur *= aa;
            }
            return res;
        }
        
        vector<T> chirpz_even(T z, int n) { // P(1), P(z^2), P(z^4), ..., P(z^2(n-1))
            int m = deg();
            if(is_zero()) {
                return vector<T>(n, 0);
            }
            vector<T> vv(m + n);
            T zi = T(1) / z;
            T zz = zi * zi;
            T cur = zi;
            T total = 1;
            for(int i = 0; i <= max(n - 1, m); i++) {
                if(i <= m) {vv[m - i] = total;}
                if(i < n) {vv[m + i] = total;}
                total *= cur;
                cur *= zz;
            }
            poly w = (mulx_sq(z) * vv).substr(m, m + n).mulx_sq(z);
            vector<T> res(n);
            for(int i = 0; i < n; i++) {
                res[i] = w[i];
            }
            return res;
        }
        
        vector<T> chirpz(T z, int n) { // P(1), P(z), P(z^2), ..., P(z^(n-1))
            auto even = chirpz_even(z, (n + 1) / 2);
            auto odd = mulx(z).chirpz_even(z, n / 2);
            vector<T> ans(n);
            for(int i = 0; i < n / 2; i++) {
                ans[2 * i] = even[i];
                ans[2 * i + 1] = odd[i];
            }
            if(n % 2 == 1) {
                ans[n - 1] = even.back();
            }
            return ans;
        }
        
        vector<T> eval(vector<poly> &tree, int v, auto l, auto r) { // auxiliary evaluation function
            if(r - l == 1) {
                return {eval(*l)};
            } else {
                auto m = l + (r - l) / 2;
                auto A = (*this % tree[2 * v]).eval(tree, 2 * v, l, m);
                auto B = (*this % tree[2 * v + 1]).eval(tree, 2 * v + 1, m, r);
                A.insert(end(A), begin(B), end(B));
                return A;
            }
        }
        
        vector<T> eval(vector<T> x) { // evaluate polynomial in (x1, ..., xn)
            int n = x.size();
            if(is_zero()) {
                return vector<T>(n, T(0));
            }
            vector<poly> tree(4 * n);
            build(tree, 1, begin(x), end(x));
            return eval(tree, 1, begin(x), end(x));
        }
        
        poly inter(vector<poly> &tree, int v, auto l, auto r, auto ly, auto ry) { // auxiliary interpolation function
            if(r - l == 1) {
                return {*ly / a[0]};
            } else {
                auto m = l + (r - l) / 2;
                auto my = ly + (ry - ly) / 2;
                auto A = (*this % tree[2 * v]).inter(tree, 2 * v, l, m, ly, my);
                auto B = (*this % tree[2 * v + 1]).inter(tree, 2 * v + 1, m, r, my, ry);
                return A * tree[2 * v + 1] + B * tree[2 * v];
            }
        }
        
        static auto resultant(poly a, poly b) { // computes resultant of a and b
            if(b.is_zero()) {
                return 0;
            } else if(b.deg() == 0) {
                return bpow(b.lead(), a.deg());
            } else {
                int pw = a.deg();
                a %= b;
                pw -= a.deg();
                auto mul = bpow(b.lead(), pw) * T((b.deg() & a.deg() & 1) ? -1 : 1);
                auto ans = resultant(b, a);
                return ans * mul;
            }
        }
        
        static poly kmul(auto L, auto R) { // computes (x-a1)(x-a2)...(x-an) without building tree
            if(R - L == 1) {
                return vector<T>{-*L, 1};
            } else {
                auto M = L + (R - L) / 2;
                return kmul(L, M) * kmul(M, R);
            }
        }
        
        static poly build(vector<poly> &res, int v, auto L, auto R) { // builds evaluation tree for (x-a1)(x-a2)...(x-an)
            if(R - L == 1) {
                return res[v] = vector<T>{-*L, 1};
            } else {
                auto M = L + (R - L) / 2;
                return res[v] = build(res, 2 * v, L, M) * build(res, 2 * v + 1, M, R);
            }
        }
        
        static auto inter(vector<T> x, vector<T> y) { // interpolates minimum polynomial from (xi, yi) pairs
            int n = x.size();
            vector<poly> tree(4 * n);
            return build(tree, 1, begin(x), end(x)).deriv().inter(tree, 1, begin(x), end(x), begin(y), end(y));
        }
        
        
        static poly xk(size_t n) { // P(x) = x^n
            return poly(T(1)).mul_xk(n);
        }
        
        static poly ones(size_t n) { // P(x) = 1 + x + ... + x^{n-1} 
            return vector<T>(n, 1);
        }
        
        static poly expx(size_t n) { // P(x) = e^x (mod x^n)
            return ones(n).borel();
        }
        
        // [x^k] (a corr b) = sum_{i+j=k} ai*b{m-j} 
        //                  = sum_{i-j=k-m} ai*bj
        static poly corr(poly a, poly b) { // cross-correlation
            return a * b.reverse();
        }
        
        poly invborel() const { // ak *= k!
            auto res = *this;
            for(int i = 0; i <= deg(); i++) {
                res.coef(i) *= fact<T>(i);
            }
            return res;
        }
        
        poly borel() const { // ak /= k!
            auto res = *this;
            for(int i = 0; i <= deg(); i++) {
                res.coef(i) *= rfact<T>(i);
            }
            return res;
        }
        
        poly shift(T a) const { // P(x + a)
            return (expx(deg() + 1).mulx(a).reverse() * invborel()).div_xk(deg()).borel();
        }
    };
    
    static auto operator * (const auto& a, const poly<auto>& b) {
        return b * a;
    }
};

using namespace algebra;

const int mod = 998244353;
typedef modular<mod> base;
typedef poly<base> polyn;

void solve() {
    int n, m;
    cin >> n >> m;
    vector<base> a(n), b(m);
    copy_n(istream_iterator<base>(cin), n, begin(a));
    copy_n(istream_iterator<base>(cin), m, begin(b));
    auto res = polyn(a).inv_mod(polyn(b));
    if(res) {
        cout << res->deg() + 1 << endl;
        res->print();
    } else {
        cout << -1 << endl;
    }    
}
#define all(x) begin(x),end(x)

polyn det(vector<vector<polyn>>& a) {
	int n = a.size(); polyn ans = {1};
	rep(i,0,n) {
		rep(j,i+1,n) {
			while (!a[j][i].is_zero()) { // gcd step
				auto t = a[i][i] / a[j][i];
				if (!t.is_zero()) rep(k,i,n)
					a[i][k] = (a[i][k] - a[j][k] * t);
				swap(a[i], a[j]);
				ans *= -1;
			}
		}
		ans = ans * a[i][i];
		if (ans.is_zero()) return {0};
	}
	return ans;
}

int main() {
    // calculate reduced form and multiply
    // need polynomials
    int n; cin >> n;
    vvi a(n,vi(n));
    for(auto& r : a) for(auto& i : r) cin >> i;
    vvi b(n,vi(n));
    for(auto& r : b) for(auto& i : r) cin >> i;
    vector<vector<polyn>> pl(n, vector<polyn>(n));
    for(int i=0;i<n;++i) {
        for(int j=0;j<n;++j) pl[i][j] = polyn(vector<base>{a[i][j],b[i][j]});
    }
    auto res = det(pl);
    for(int i=0;i<=n;++i) {
        if(res.deg()+1<=i) cout << "0\n";
        else cout << res[i] << '\n';
    }
    
    
}
0