結果
| 問題 | No.1900 Don't be Powers of 2 |
| コンテスト | |
| ユーザー |
jell
|
| 提出日時 | 2022-04-17 11:57:14 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 130 ms / 2,000 ms |
| コード長 | 57,602 bytes |
| コンパイル時間 | 17,470 ms |
| コンパイル使用メモリ | 383,972 KB |
| 最終ジャッジ日時 | 2025-01-28 18:55:03 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 42 |
ソースコード
#line 1 "other-workspace\\tmp.cpp"
#if defined(ONLINE_JUDGE) // && 0
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,mmx,avx,avx2")
#endif
// #undef _GLIBCXX_DEBUG
#include <bits/extc++.h>
#line 2 "Library\\lib\\alias"
/**
* @file alias
* @brief Alias
*/
#line 10 "Library\\lib\\alias"
// #include "bit"
#line 2 "Library\\lib\\limits"
#line 4 "Library\\lib\\limits"
namespace workspace {
template <class _Tp> struct numeric_limits : std::numeric_limits<_Tp> {};
#ifdef __SIZEOF_INT128__
template <> struct numeric_limits<__uint128_t> {
constexpr static __uint128_t max() { return ~__uint128_t(0); }
constexpr static __uint128_t min() { return 0; }
};
template <> struct numeric_limits<__int128_t> {
constexpr static __int128_t max() {
return numeric_limits<__uint128_t>::max() >> 1;
}
constexpr static __int128_t min() { return -max() - 1; }
};
#endif
} // namespace workspace
#line 13 "Library\\lib\\alias"
namespace workspace {
constexpr static char eol = '\n';
using namespace std;
using i32 = int_least32_t;
using u32 = uint_least32_t;
using i64 = int_least64_t;
using u64 = uint_least64_t;
#ifdef __SIZEOF_INT128__
using i128 = __int128_t;
using u128 = __uint128_t;
#else
#warning 128-bit integer is not available.
#endif
template <class _T1, class _T2,
typename = decltype(std::declval<const _T2 &>() <
std::declval<const _T1 &>())>
constexpr
typename std::conditional<std::is_same<_T1, _T2>::value, const _T1 &,
typename std::common_type<_T1, _T2>::type>::type
min(const _T1 &__x, const _T2 &__y) noexcept {
return __y < __x ? __y : __x;
}
template <class _T1, class _T2, class _Compare,
typename = decltype(std::declval<_Compare>()(
std::declval<const _T2 &>(), std::declval<const _T1 &>()))>
constexpr
typename std::conditional<std::is_same<_T1, _T2>::value, const _T1 &,
typename std::common_type<_T1, _T2>::type>::type
min(const _T1 &__x, const _T2 &__y, _Compare __comp) noexcept {
return __comp(__y, __x) ? __y : __x;
}
template <class _Tp, typename = decltype(std::declval<const _Tp &>() <
std::declval<const _Tp &>())>
constexpr _Tp min(std::initializer_list<_Tp> __x) noexcept {
return *std::min_element(__x.begin(), __x.end());
}
template <class _Tp, class _Compare,
typename = decltype(std::declval<_Compare>()(
std::declval<const _Tp &>(), std::declval<const _Tp &>()))>
constexpr _Tp min(std::initializer_list<_Tp> __x, _Compare __comp) noexcept {
return *std::min_element(__x.begin(), __x.end(), __comp);
}
template <class _T1, class _T2,
typename = decltype(std::declval<const _T1 &>() <
std::declval<const _T2 &>())>
constexpr
typename std::conditional<std::is_same<_T1, _T2>::value, const _T1 &,
typename std::common_type<_T1, _T2>::type>::type
max(const _T1 &__x, const _T2 &__y) noexcept {
return __x < __y ? __y : __x;
}
template <class _T1, class _T2, class _Compare,
typename = decltype(std::declval<_Compare>()(
std::declval<const _T1 &>(), std::declval<const _T2 &>()))>
constexpr
typename std::conditional<std::is_same<_T1, _T2>::value, const _T1 &,
typename std::common_type<_T1, _T2>::type>::type
max(const _T1 &__x, const _T2 &__y, _Compare __comp) noexcept {
return __comp(__x, __y) ? __y : __x;
}
template <class _Tp, typename = decltype(std::declval<const _Tp &>() <
std::declval<const _Tp &>())>
constexpr _Tp max(std::initializer_list<_Tp> __x) noexcept {
return *std::max_element(__x.begin(), __x.end());
}
template <class _Tp, class _Compare,
typename = decltype(std::declval<_Compare>()(
std::declval<const _Tp &>(), std::declval<const _Tp &>()))>
constexpr _Tp max(std::initializer_list<_Tp> __x, _Compare __comp) noexcept {
return *std::max_element(__x.begin(), __x.end(), __comp);
}
} // namespace workspace
#line 2 "Library\\lib\\cxx20"
/*
* @file cxx20
* @brief C++20 Features
*/
#line 2 "Library\\lib\\bit"
#if __cplusplus > 201703L
#include <bit>
#elif __cplusplus > 201402L
#ifndef _GLIBCXX_BIT
#define _GLIBCXX_BIT 1
#include <limits>
#include <type_traits>
namespace std {
template <typename _Tp> constexpr int __countl_zero(_Tp __x) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
if (__x == 0) return _Nd;
constexpr auto _Nd_ull = numeric_limits<unsigned long long>::digits;
constexpr auto _Nd_ul = numeric_limits<unsigned long>::digits;
constexpr auto _Nd_u = numeric_limits<unsigned>::digits;
if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_u) {
constexpr int __diff = _Nd_u - _Nd;
return __builtin_clz(__x) - __diff;
} else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ul) {
constexpr int __diff = _Nd_ul - _Nd;
return __builtin_clzl(__x) - __diff;
} else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ull) {
constexpr int __diff = _Nd_ull - _Nd;
return __builtin_clzll(__x) - __diff;
} else // (_Nd > _Nd_ull)
{
static_assert(_Nd <= (2 * _Nd_ull),
"Maximum supported integer size is 128-bit");
unsigned long long __high = __x >> _Nd_ull;
if (__high != 0) {
constexpr int __diff = (2 * _Nd_ull) - _Nd;
return __builtin_clzll(__high) - __diff;
}
constexpr auto __max_ull = numeric_limits<unsigned long long>::max();
unsigned long long __low = __x & __max_ull;
return (_Nd - _Nd_ull) + __builtin_clzll(__low);
}
}
template <typename _Tp> constexpr int __countr_zero(_Tp __x) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
if (__x == 0) return _Nd;
constexpr auto _Nd_ull = numeric_limits<unsigned long long>::digits;
constexpr auto _Nd_ul = numeric_limits<unsigned long>::digits;
constexpr auto _Nd_u = numeric_limits<unsigned>::digits;
if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_u)
return __builtin_ctz(__x);
else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ul)
return __builtin_ctzl(__x);
else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ull)
return __builtin_ctzll(__x);
else // (_Nd > _Nd_ull)
{
static_assert(_Nd <= (2 * _Nd_ull),
"Maximum supported integer size is 128-bit");
constexpr auto __max_ull = numeric_limits<unsigned long long>::max();
unsigned long long __low = __x & __max_ull;
if (__low != 0) return __builtin_ctzll(__low);
unsigned long long __high = __x >> _Nd_ull;
return __builtin_ctzll(__high) + _Nd_ull;
}
}
template <typename _Tp> constexpr int __popcount(_Tp __x) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
if (__x == 0) return 0;
constexpr auto _Nd_ull = numeric_limits<unsigned long long>::digits;
constexpr auto _Nd_ul = numeric_limits<unsigned long>::digits;
constexpr auto _Nd_u = numeric_limits<unsigned>::digits;
if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_u)
return __builtin_popcount(__x);
else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ul)
return __builtin_popcountl(__x);
else if _GLIBCXX17_CONSTEXPR (_Nd <= _Nd_ull)
return __builtin_popcountll(__x);
else // (_Nd > _Nd_ull)
{
static_assert(_Nd <= (2 * _Nd_ull),
"Maximum supported integer size is 128-bit");
constexpr auto __max_ull = numeric_limits<unsigned long long>::max();
unsigned long long __low = __x & __max_ull;
unsigned long long __high = __x >> _Nd_ull;
return __builtin_popcountll(__low) + __builtin_popcountll(__high);
}
}
template <typename _Tp> constexpr _Tp __bit_ceil(_Tp __x) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
if (__x == 0 || __x == 1) return 1;
auto __shift_exponent = _Nd - __countl_zero((_Tp)(__x - 1u));
#ifdef _GLIBCXX_HAVE_BUILTIN_IS_CONSTANT_EVALUATED
if (!__builtin_is_constant_evaluated()) {
__glibcxx_assert(__shift_exponent != numeric_limits<_Tp>::digits);
}
#endif
using __promoted_type = decltype(__x << 1);
if _GLIBCXX17_CONSTEXPR (!is_same<__promoted_type, _Tp>::value) {
const int __extra_exp = sizeof(__promoted_type) / sizeof(_Tp) / 2;
__shift_exponent |= (__shift_exponent & _Nd) << __extra_exp;
}
return (_Tp)1u << __shift_exponent;
}
template <typename _Tp> constexpr _Tp __bit_floor(_Tp __x) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
if (__x == 0) return 0;
return (_Tp)1u << (_Nd - __countl_zero((_Tp)(__x >> 1)));
}
template <typename _Tp> constexpr _Tp __bit_width(_Tp __x) noexcept {
constexpr auto _Nd = numeric_limits<_Tp>::digits;
return _Nd - __countl_zero(__x);
}
} // namespace std
#endif
#endif
namespace workspace {
#ifdef _GLIBCXX_BIT
template <class _Tp> constexpr _Tp bsf(_Tp __x) noexcept {
return std::__countr_zero(__x);
}
template <class _Tp> constexpr _Tp bsr(_Tp __x) noexcept {
return std::__bit_width(__x) - 1;
}
template <class _Tp> constexpr _Tp popcount(_Tp __x) noexcept {
return std::__popcount(__x);
}
#endif
template <class _Tp>
constexpr _Tp test_bit(const _Tp& __b, std::size_t __n) noexcept {
return __b >> __n & 1;
}
} // namespace workspace
#line 9 "Library\\lib\\cxx20"
#if __cplusplus <= 201703L
#include <algorithm>
#include <vector>
namespace std {
/**
* @brief Erase the elements of a container that do not satisfy the condition.
* @param __cont Container.
* @param __pred Predicate.
* @return Number of the erased elements.
*/
template <typename _Tp, typename _Alloc, typename _Predicate>
inline typename vector<_Tp, _Alloc>::size_type erase_if(
vector<_Tp, _Alloc>& __cont, _Predicate __pred) {
const auto __osz = __cont.size();
__cont.erase(remove_if(__cont.begin(), __cont.end(), __pred), __cont.end());
return __osz - __cont.size();
}
/**
* @brief Erase the elements of a container that are equal to the given value.
* @param __cont Container.
* @param __value Value.
* @return Number of the erased elements.
*/
template <typename _Tp, typename _Alloc, typename _Up>
inline typename vector<_Tp, _Alloc>::size_type erase(
vector<_Tp, _Alloc>& __cont, const _Up& __value) {
const auto __osz = __cont.size();
__cont.erase(remove(__cont.begin(), __cont.end(), __value), __cont.end());
return __osz - __cont.size();
}
} // namespace std
#endif
#line 2 "Library\\src\\sys\\call_once.hpp"
/**
* @file call_once.hpp
* @brief Call Once
*/
#line 9 "Library\\src\\sys\\call_once.hpp"
namespace workspace {
/**
* @brief Call once.
*/
template <class _F> void call_once(_F &&__f) {
static std::unordered_set<void *> __called;
if (__called.count(std::addressof(__f))) return;
__called.emplace(std::addressof(__f));
__f();
}
} // namespace workspace
#line 2 "Library\\src\\sys\\clock.hpp"
/**
* @file clock.hpp
* @brief Clock
*/
#line 9 "Library\\src\\sys\\clock.hpp"
namespace workspace {
using namespace std::chrono;
namespace internal {
// The start time of the program.
const auto start_time{system_clock::now()};
} // namespace internal
/**
* @return Elapsed time of the program.
*/
decltype(auto) elapsed() noexcept {
const auto end_time{system_clock::now()};
return duration_cast<milliseconds>(end_time - internal::start_time).count();
}
} // namespace workspace
#line 2 "Library\\src\\sys\\ejection.hpp"
/**
* @file ejection.hpp
* @brief Ejection
*/
#line 9 "Library\\src\\sys\\ejection.hpp"
namespace workspace {
namespace internal {
struct ejection {
bool exit = 0;
};
} // namespace internal
/**
* @brief eject from a try block, throw nullptr
* @param arg output
*/
template <class Tp> void eject(Tp const &arg) {
std::cout << arg << "\n";
throw internal::ejection{};
}
void exit() { throw internal::ejection{true}; }
} // namespace workspace
#line 2 "Library\\src\\sys\\iteration.hpp"
/**
* @file iteration.hpp
* @brief Case Iteration
*/
#line 9 "Library\\src\\sys\\iteration.hpp"
#line 11 "Library\\src\\sys\\iteration.hpp"
namespace workspace {
void main();
struct {
// 1-indexed
unsigned current{0};
unsigned total{1};
void read() { (std::cin >> total).ignore(); }
int iterate() {
static bool once = false;
assert(!once);
once = true;
while (current++ < total) {
try {
main();
} catch (internal::ejection const& status) {
if (status.exit) break;
}
}
return 0;
}
} case_info;
} // namespace workspace
#line 1 "Library\\lib\\utils"
// #include "src/utils/cached.hpp"
// #include "src/utils/cat.hpp"
#line 2 "Library\\src\\utils\\chval.hpp"
/**
* @file chval.hpp
* @brief Change Less/Greater
*/
#line 9 "Library\\src\\utils\\chval.hpp"
namespace workspace {
/**
* @brief Substitute __y for __x if __y < __x.
* @param __x Reference
* @param __y Comparison target
* @return Whether or not __x is updated.
*/
template <class _T1, class _T2,
typename = decltype(std::declval<_T2>() < std::declval<_T1 &>())>
typename std::enable_if<std::is_assignable<_T1 &, _T2>::value, bool>::type chle(
_T1 &__x, _T2 &&__y) noexcept {
return __y < __x ? __x = std::forward<_T2>(__y), true : false;
}
/**
* @brief Substitute __y for __x if __x < __y.
* @param __x Reference
* @param __y Comparison target
* @return Whether or not __x is updated.
*/
template <class _T1, class _T2,
typename = decltype(std::declval<_T1 &>() < std::declval<_T2>())>
typename std::enable_if<std::is_assignable<_T1 &, _T2>::value, bool>::type chgr(
_T1 &__x, _T2 &&__y) noexcept {
return __x < __y ? __x = std::forward<_T2>(__y), true : false;
}
/**
* @brief Substitute __y for __x if __comp(__y, __x) is true.
* @param __x Reference
* @param __y Comparison target
* @param __comp Compare function object
* @return Whether or not __x is updated.
*/
template <class _T1, class _T2, class _Compare,
typename = decltype(std::declval<_Compare>()(std::declval<_T2>(),
std::declval<_T1 &>()))>
typename std::enable_if<std::is_assignable<_T1 &, _T2>::value, bool>::type chle(
_T1 &__x, _T2 &&__y, _Compare __comp) noexcept {
return __comp(__y, __x) ? __x = std::forward<_T2>(__y), true : false;
}
/**
* @brief Substitute __y for __x if __comp(__x, __y) is true.
* @param __x Reference
* @param __y Comparison target
* @param __comp Compare function object
* @return Whether or not __x is updated.
*/
template <class _T1, class _T2, class _Compare,
typename = decltype(std::declval<_Compare>()(std::declval<_T1 &>(),
std::declval<_T2>()))>
typename std::enable_if<std::is_assignable<_T1 &, _T2>::value, bool>::type chgr(
_T1 &__x, _T2 &&__y, _Compare __comp) noexcept {
return __comp(__x, __y) ? __x = std::forward<_T2>(__y), true : false;
}
} // namespace workspace
#line 2 "Library\\src\\utils\\fixed_point.hpp"
/**
* @file fixed_point.hpp
* @brief Fixed Point Combinator
*/
#line 9 "Library\\src\\utils\\fixed_point.hpp"
namespace workspace {
// Fixed Point Combinator.
template <class _F> class fixed_point {
struct _wrapper {
_F &__ref;
template <class... _Args> decltype(auto) operator()(_Args &&...__args) {
return __ref(*this, std::forward<_Args>(__args)...);
}
};
_F __fn;
public:
// Construct a new fixed-point object.
fixed_point(_F __x) noexcept : __fn(__x) {}
// Function call.
template <class... _Args>
decltype(auto) operator()(_Args &&...__args) noexcept(noexcept(_wrapper{
__fn}(std::forward<_Args>(__args)...))) {
return _wrapper{__fn}(std::forward<_Args>(__args)...);
}
};
} // namespace workspace
#line 5 "Library\\lib\\utils"
// #include "src/utils/hash.hpp"
// #include "src/utils/io/istream.hpp"
// #include "src/utils/io/ostream.hpp"
// #include "src/utils/io/read.hpp"
#line 2 "Library\\src\\utils\\grid\\motion.hpp"
/**
* @file motion.hpp
* @brief Motion
*/
#line 9 "Library\\src\\utils\\grid\\motion.hpp"
#line 2 "Library\\lib\\cxx17"
#line 2 "Library\\lib\\cxx14"
#ifndef _CXX14_CONSTEXPR
#if __cplusplus >= 201402L
#define _CXX14_CONSTEXPR constexpr
#else
#define _CXX14_CONSTEXPR
#endif
#endif
#line 4 "Library\\lib\\cxx17"
#ifndef _CXX17_CONSTEXPR
#if __cplusplus >= 201703L
#define _CXX17_CONSTEXPR constexpr
#else
#define _CXX17_CONSTEXPR
#endif
#endif
#ifndef _CXX17_STATIC_ASSERT
#if __cplusplus >= 201703L
#define _CXX17_STATIC_ASSERT static_assert
#else
#define _CXX17_STATIC_ASSERT assert
#endif
#endif
#line 22 "Library\\lib\\cxx17"
#if __cplusplus < 201703L
namespace std {
/**
* @brief Return the size of a container.
* @param __cont Container.
*/
template <typename _Container>
constexpr auto size(const _Container& __cont) noexcept(noexcept(__cont.size()))
-> decltype(__cont.size()) {
return __cont.size();
}
/**
* @brief Return the size of an array.
*/
template <typename _Tp, size_t _Nm>
constexpr size_t size(const _Tp (&)[_Nm]) noexcept {
return _Nm;
}
/**
* @brief Return whether a container is empty.
* @param __cont Container.
*/
template <typename _Container>
[[nodiscard]] constexpr auto empty(const _Container& __cont) noexcept(
noexcept(__cont.empty())) -> decltype(__cont.empty()) {
return __cont.empty();
}
/**
* @brief Return whether an array is empty (always false).
*/
template <typename _Tp, size_t _Nm>
[[nodiscard]] constexpr bool empty(const _Tp (&)[_Nm]) noexcept {
return false;
}
/**
* @brief Return whether an initializer_list is empty.
* @param __il Initializer list.
*/
template <typename _Tp>
[[nodiscard]] constexpr bool empty(initializer_list<_Tp> __il) noexcept {
return __il.size() == 0;
}
struct monostate {};
} // namespace std
#else
#include <variant>
#endif
#line 11 "Library\\src\\utils\\grid\\motion.hpp"
namespace workspace {
/**
* @brief Transpose.
* @param __grid
*/
template <class _Grid,
typename = decltype(std::declval<std::decay_t<_Grid>>()[0].resize(0))>
constexpr decltype(auto) transpose(_Grid &&__grid) noexcept {
#if __cplusplus < 201703L
auto __h = __grid.size(), __w = __grid[0].size();
#else
auto __h = std::size(__grid), __w = std::size(__grid[0]);
#endif
std::decay_t<_Grid> __t(__w);
for (auto &&__r : __t) __r.resize(__h);
for (size_t __i = 0; __i != __h; ++__i)
for (size_t __j = 0; __j != __w; ++__j)
if _CXX17_CONSTEXPR (std::is_rvalue_reference<decltype(__grid)>::value)
__t[__j][__i] = std::move(__grid[__i][__j]);
else
__t[__j][__i] = __grid[__i][__j];
return __t;
}
/**
* @brief Transpose.
* @param __grid
*/
template <class _Tp, size_t _Rows, size_t _Cols>
constexpr decltype(auto) transpose(const _Tp (&__grid)[_Rows][_Cols]) noexcept {
std::array<std::array<_Tp, _Rows>, _Cols> __t;
for (size_t __i = 0; __i != _Rows; ++__i)
for (size_t __j = 0; __j != _Cols; ++__j) __t[__j][__i] = __grid[__i][__j];
return __t;
}
/**
* @brief Transpose.
* @param __grid
*/
template <class _Tp, size_t _Rows, size_t _Cols>
constexpr decltype(auto) transpose(_Tp(&&__grid)[_Rows][_Cols]) noexcept {
std::array<std::array<_Tp, _Rows>, _Cols> __t;
for (size_t __i = 0; __i != _Rows; ++__i)
for (size_t __j = 0; __j != _Cols; ++__j)
__t[__j][__i] = std::move(__grid[__i][__j]);
return __t;
}
/**
* @brief Transpose.
* @param __grid
*/
template <class _Tp, size_t _Rows, size_t _Cols>
constexpr decltype(auto) transpose(
const std::array<std::array<_Tp, _Cols>, _Rows> &__grid) noexcept {
std::array<std::array<_Tp, _Rows>, _Cols> __t;
for (size_t __i = 0; __i != _Rows; ++__i)
for (size_t __j = 0; __j != _Cols; ++__j) __t[__j][__i] = __grid[__i][__j];
return __t;
}
/**
* @brief Transpose.
* @param __grid
*/
template <class _Tp, size_t _Rows, size_t _Cols>
constexpr decltype(auto) transpose(
std::array<std::array<_Tp, _Cols>, _Rows> &&__grid) noexcept {
std::array<std::array<_Tp, _Rows>, _Cols> __t;
for (size_t __i = 0; __i != _Rows; ++__i)
for (size_t __j = 0; __j != _Cols; ++__j)
__t[__j][__i] = std::move(__grid[__i][__j]);
return __t;
}
/**
* @brief Roll the grid counter-clockwise.
* @param __grid
*/
template <class _Grid> decltype(auto) roll_ccw(_Grid &&__grid) noexcept {
if _CXX17_CONSTEXPR (std::is_rvalue_reference<decltype(__grid)>::value) {
auto __t = transpose(std::move(__grid));
std::reverse(std::begin(__t), std::end(__t));
return __t;
} else {
auto __t = transpose(__grid);
std::reverse(std::begin(__t), std::end(__t));
return __t;
}
}
/**
* @brief Roll the grid clockwise.
* @param __grid
*/
template <class _Grid> decltype(auto) roll_cw(_Grid &&__grid) noexcept {
if _CXX17_CONSTEXPR (std::is_rvalue_reference<decltype(__grid)>::value) {
std::reverse(std::begin(__grid), std::end(__grid));
return transpose(std::move(__grid));
} else {
auto __t = transpose(__grid);
for (auto &&__r : __t) std::reverse(std::begin(__r), std::end(__r));
return __t;
}
}
} // namespace workspace
#line 2 "Library\\src\\utils\\io\\setup.hpp"
/**
* @file setup.hpp
* @brief I/O Setup
*/
#line 10 "Library\\src\\utils\\io\\setup.hpp"
namespace workspace {
/**
* @brief Setup I/O.
* @param __n Standard output precision
*/
void io_setup(int __n) {
std::cin.tie(0)->sync_with_stdio(0);
std::cout << std::fixed << std::setprecision(__n);
#ifdef _buffer_check
atexit([] {
char bufc;
if (std::cin >> bufc)
std::cerr << "\n\033[43m\033[30mwarning: buffer not empty.\033[0m\n\n";
});
#endif
}
} // namespace workspace
#line 11 "Library\\lib\\utils"
// #include "src/utils/iterator/category.hpp"
// #include "src/utils/iterator/reverse.hpp"
// #include "src/utils/make_vector.hpp"
// #include "src/utils/py-like/enumerate.hpp"
#line 2 "Library\\src\\utils\\py-like\\range.hpp"
/**
* @file range.hpp
* @brief Range
*/
#line 2 "Library\\src\\utils\\py-like\\reversed.hpp"
/**
* @file reversed.hpp
* @brief Reversed
*/
#line 9 "Library\\src\\utils\\py-like\\reversed.hpp"
#line 11 "Library\\src\\utils\\py-like\\reversed.hpp"
namespace workspace {
// Reversed container.
template <class _Container> class reversed {
_Container __c;
public:
template <class _Tp>
constexpr reversed(_Tp &&__x) noexcept : __c(std::forward<_Container>(__x)) {}
template <class _Tp>
constexpr reversed(std::initializer_list<_Tp> __x) noexcept : __c(__x) {}
constexpr decltype(auto) begin() noexcept { return std::rbegin(__c); }
constexpr decltype(auto) begin() const noexcept { return std::rbegin(__c); }
constexpr decltype(auto) end() noexcept { return std::rend(__c); }
constexpr decltype(auto) end() const noexcept { return std::rend(__c); }
constexpr bool empty() const noexcept { return std::empty(__c); }
constexpr decltype(auto) size() const noexcept { return std::size(__c); }
using iterator = decltype(std::rbegin(__c));
using const_iterator = decltype(std::crbegin(__c));
using size_type = decltype(std::size(__c));
using difference_type =
typename std::iterator_traits<iterator>::difference_type;
using value_type = typename std::iterator_traits<iterator>::value_type;
using reference = typename std::iterator_traits<iterator>::reference;
using const_reference =
typename std::iterator_traits<const_iterator>::reference;
};
#if __cpp_deduction_guides >= 201606L
template <class _Tp> reversed(_Tp &&) -> reversed<_Tp>;
template <class _Tp>
reversed(std::initializer_list<_Tp>) -> reversed<std::initializer_list<_Tp>>;
#endif
} // namespace workspace
#line 9 "Library\\src\\utils\\py-like\\range.hpp"
namespace workspace {
template <class _Index> class range {
_Index __first, __last;
public:
class iterator {
_Index __i;
public:
using difference_type = std::ptrdiff_t;
using value_type = _Index;
using pointer = void;
using reference = value_type;
using iterator_category = std::random_access_iterator_tag;
constexpr iterator() = default;
constexpr iterator(const _Index &__x) noexcept : __i(__x) {}
constexpr bool operator==(const iterator &__x) const noexcept {
return __i == __x.__i;
}
constexpr bool operator!=(const iterator &__x) const noexcept {
return __i != __x.__i;
}
constexpr bool operator<(const iterator &__x) const noexcept {
return __i < __x.__i;
}
constexpr bool operator<=(const iterator &__x) const noexcept {
return __i <= __x.__i;
}
constexpr bool operator>(const iterator &__x) const noexcept {
return __i > __x.__i;
}
constexpr bool operator>=(const iterator &__x) const noexcept {
return __i >= __x.__i;
}
constexpr iterator &operator++() noexcept {
++__i;
return *this;
}
constexpr iterator operator++(int) noexcept {
auto __tmp = *this;
++__i;
return __tmp;
}
constexpr iterator &operator--() noexcept {
--__i;
return *this;
}
constexpr iterator operator--(int) noexcept {
auto __tmp = *this;
--__i;
return __tmp;
}
constexpr difference_type operator-(const iterator &__x) const noexcept {
return __i - __x.__i;
}
constexpr iterator &operator+=(difference_type __x) noexcept {
__i += __x;
return *this;
}
constexpr iterator operator+(difference_type __x) const noexcept {
return iterator(*this) += __x;
}
constexpr iterator &operator-=(difference_type __x) noexcept {
__i -= __x;
return *this;
}
constexpr iterator operator-(difference_type __x) const noexcept {
return iterator(*this) -= __x;
}
constexpr reference operator*() const noexcept { return __i; }
};
using value_type = _Index;
using reference = value_type;
using difference_type = std::ptrdiff_t;
using size_type = std::size_t;
using const_iterator = iterator;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = reverse_iterator;
template <class _Tp1, class _Tp2>
constexpr range(const _Tp1 &__first, const _Tp2 &__last) noexcept
: __first(__first), __last(__last) {}
template <class _Tp>
constexpr range(const _Tp &__last) noexcept : __first(), __last(__last) {}
constexpr iterator begin() const noexcept { return {__first}; }
constexpr const_iterator cbegin() const noexcept { return begin(); }
constexpr iterator end() const noexcept { return {__last}; }
constexpr const_iterator cend() const noexcept { return end(); }
constexpr reverse_iterator rbegin() const noexcept {
return reverse_iterator{end()};
}
constexpr const_reverse_iterator crbegin() const noexcept { return rbegin(); }
constexpr reverse_iterator rend() const noexcept {
return reverse_iterator{begin()};
}
constexpr const_reverse_iterator crend() const noexcept { return rend(); }
constexpr size_type size() const noexcept { return __last - __first; }
};
#if __cpp_deduction_guides >= 201606L
template <class _Tp1, class _Tp2>
range(const _Tp1 &, const _Tp2 &)
-> range<std::decay_t<decltype(++std::declval<_Tp1 &>())>>;
template <class _Tp>
range(const _Tp &) -> range<std::decay_t<decltype(++std::declval<_Tp &>())>>;
template <class... _Args>
constexpr decltype(auto) rrange(_Args &&...__args) noexcept {
return reversed(range(std::forward<_Args>(__args)...));
}
#endif
} // namespace workspace
#line 16 "Library\\lib\\utils"
// #include "src/utils/py-like/reversed.hpp"
// #include "src/utils/py-like/zip.hpp"
// #include "src/utils/rand/rng.hpp"
// #include "src/utils/rand/shuffle.hpp"
// #include "src/utils/round_div.hpp"
// #include "src\utils\rand\tree.hpp"
// #include "src\utils\reference_list.hpp"
#line 2 "Library\\src\\utils\\io\\input.hpp"
/**
* @file input.hpp
* @brief Input
*/
#line 2 "Library\\src\\utils\\sfinae.hpp"
/**
* @file sfinae.hpp
* @brief SFINAE
*/
#line 10 "Library\\src\\utils\\sfinae.hpp"
#include <type_traits>
#ifndef __INT128_DEFINED__
#ifdef __SIZEOF_INT128__
#define __INT128_DEFINED__ 1
#else
#define __INT128_DEFINED__ 0
#endif
#endif
namespace std {
#if __INT128_DEFINED__
template <> struct make_signed<__uint128_t> { using type = __int128_t; };
template <> struct make_signed<__int128_t> { using type = __int128_t; };
template <> struct make_unsigned<__uint128_t> { using type = __uint128_t; };
template <> struct make_unsigned<__int128_t> { using type = __uint128_t; };
template <> struct is_signed<__uint128_t> : std::false_type {};
template <> struct is_signed<__int128_t> : std::true_type {};
template <> struct is_unsigned<__uint128_t> : std::true_type {};
template <> struct is_unsigned<__int128_t> : std::false_type {};
#endif
} // namespace std
namespace workspace {
template <class Tp, class... Args> struct variadic_front { using type = Tp; };
template <class... Args> struct variadic_back;
template <class Tp> struct variadic_back<Tp> { using type = Tp; };
template <class Tp, class... Args> struct variadic_back<Tp, Args...> {
using type = typename variadic_back<Args...>::type;
};
template <class type, template <class> class trait>
using enable_if_trait_type = typename std::enable_if<trait<type>::value>::type;
/**
* @brief Return type of subscripting ( @c [] ) access.
*/
template <class _Tp>
using subscripted_type =
typename std::decay<decltype(std::declval<_Tp&>()[0])>::type;
template <class Container>
using element_type = typename std::decay<decltype(*std::begin(
std::declval<Container&>()))>::type;
template <class _Tp, class = void> struct has_begin : std::false_type {};
template <class _Tp>
struct has_begin<
_Tp, std::__void_t<decltype(std::begin(std::declval<const _Tp&>()))>>
: std::true_type {
using type = decltype(std::begin(std::declval<const _Tp&>()));
};
template <class _Tp, class = void> struct has_size : std::false_type {};
template <class _Tp>
struct has_size<_Tp, std::__void_t<decltype(std::size(std::declval<_Tp>()))>>
: std::true_type {};
template <class _Tp, class = void> struct has_resize : std::false_type {};
template <class _Tp>
struct has_resize<_Tp, std::__void_t<decltype(std::declval<_Tp>().resize(
std::declval<size_t>()))>> : std::true_type {};
template <class _Tp, class = void> struct has_mod : std::false_type {};
template <class _Tp>
struct has_mod<_Tp, std::__void_t<decltype(_Tp::mod)>> : std::true_type {};
template <class _Tp, class = void> struct is_integral_ext : std::false_type {};
template <class _Tp>
struct is_integral_ext<
_Tp, typename std::enable_if<std::is_integral<_Tp>::value>::type>
: std::true_type {};
#if __INT128_DEFINED__
template <> struct is_integral_ext<__int128_t> : std::true_type {};
template <> struct is_integral_ext<__uint128_t> : std::true_type {};
#endif
#if __cplusplus >= 201402
template <class _Tp>
constexpr static bool is_integral_ext_v = is_integral_ext<_Tp>::value;
#endif
template <typename _Tp, typename = void> struct multiplicable_uint {
using type = uint_least32_t;
};
template <typename _Tp>
struct multiplicable_uint<
_Tp,
typename std::enable_if<(2 < sizeof(_Tp)) &&
(!__INT128_DEFINED__ || sizeof(_Tp) <= 4)>::type> {
using type = uint_least64_t;
};
#if __INT128_DEFINED__
template <typename _Tp>
struct multiplicable_uint<_Tp,
typename std::enable_if<(4 < sizeof(_Tp))>::type> {
using type = __uint128_t;
};
#endif
template <typename _Tp> struct multiplicable_int {
using type =
typename std::make_signed<typename multiplicable_uint<_Tp>::type>::type;
};
template <typename _Tp> struct multiplicable {
using type = std::conditional_t<
is_integral_ext<_Tp>::value,
std::conditional_t<std::is_signed<_Tp>::value,
typename multiplicable_int<_Tp>::type,
typename multiplicable_uint<_Tp>::type>,
_Tp>;
};
template <class> struct first_arg { using type = void; };
template <class _R, class _Tp, class... _Args>
struct first_arg<_R(_Tp, _Args...)> {
using type = _Tp;
};
template <class _R, class _Tp, class... _Args>
struct first_arg<_R (*)(_Tp, _Args...)> {
using type = _Tp;
};
template <class _G, class _R, class _Tp, class... _Args>
struct first_arg<_R (_G::*)(_Tp, _Args...)> {
using type = _Tp;
};
template <class _G, class _R, class _Tp, class... _Args>
struct first_arg<_R (_G::*)(_Tp, _Args...) const> {
using type = _Tp;
};
template <class _Tp, class = void> struct parse_compare : first_arg<_Tp> {};
template <class _Tp>
struct parse_compare<_Tp, std::__void_t<decltype(&_Tp::operator())>>
: first_arg<decltype(&_Tp::operator())> {};
template <class _Container, class = void> struct get_dimension {
static constexpr size_t value = 0;
};
template <class _Container>
struct get_dimension<_Container,
std::enable_if_t<has_begin<_Container>::value>> {
static constexpr size_t value =
1 + get_dimension<typename std::iterator_traits<
typename has_begin<_Container>::type>::value_type>::value;
};
} // namespace workspace
#line 2 "Library\\src\\utils\\io\\istream.hpp"
/**
* @file istream.hpp
* @brief Input Stream
*/
#include <cxxabi.h>
#line 13 "Library\\src\\utils\\io\\istream.hpp"
#line 16 "Library\\src\\utils\\io\\istream.hpp"
namespace workspace {
namespace _istream_impl {
template <class _Tp, typename = void> struct helper {
helper(std::istream &__is, _Tp &__x) {
if _CXX17_CONSTEXPR (has_begin<_Tp &>::value)
for (auto &&__e : __x) helper<std::decay_t<decltype(__e)>>(__is, __e);
else
static_assert(has_begin<_Tp>::value, "istream unsupported type.");
}
};
template <class _Tp>
struct helper<_Tp, std::__void_t<decltype(std::declval<std::istream &>() >>
std::declval<_Tp &>())>> {
helper(std::istream &__is, _Tp &__x) { __is >> __x; }
};
#ifdef __SIZEOF_INT128__
template <> struct helper<__uint128_t, void> {
helper(std::istream &__is, __uint128_t &__x) {
std::string __s;
__is >> __s;
bool __neg = false;
if (__s.front() == '-') __neg = true, __s.erase(__s.begin());
__x = 0;
for (char __d : __s) {
__x *= 10;
__d -= '0';
if (__neg)
__x -= __d;
else
__x += __d;
}
}
};
template <> struct helper<__int128_t, void> {
helper(std::istream &__is, __int128_t &__x) {
std::string __s;
__is >> __s;
bool __neg = false;
if (__s.front() == '-') __neg = true, __s.erase(__s.begin());
__x = 0;
for (char __d : __s) {
__x *= 10;
__d -= '0';
if (__neg)
__x -= __d;
else
__x += __d;
}
}
};
#endif // INT128
template <class _T1, class _T2> struct helper<std::pair<_T1, _T2>> {
helper(std::istream &__is, std::pair<_T1, _T2> &__x) {
helper<_T1>(__is, __x.first), helper<_T2>(__is, __x.second);
}
};
template <class... _Tp> struct helper<std::tuple<_Tp...>> {
helper(std::istream &__is, std::tuple<_Tp...> &__x) { iterate(__is, __x); }
private:
template <class _Tuple, size_t _Nm = 0>
void iterate(std::istream &__is, _Tuple &__x) {
if _CXX17_CONSTEXPR (_Nm != std::tuple_size<_Tuple>::value) {
helper<typename std::tuple_element<_Nm, _Tuple>::type>(
__is, std::get<_Nm>(__x)),
iterate<_Tuple, _Nm + 1>(__is, __x);
}
}
};
} // namespace _istream_impl
/**
* @brief A wrapper class for std::istream.
*/
class istream : public std::istream {
public:
/**
* @brief Wrapped operator.
*/
template <typename _Tp> istream &operator>>(_Tp &__x) {
_istream_impl::helper<_Tp>(*this, __x);
if (std::istream::fail()) {
static auto once = atexit([] {
std::cerr << "\n\033[43m\033[30mwarning: failed to read \'"
<< abi::__cxa_demangle(typeid(_Tp).name(), 0, 0, 0)
<< "\'.\033[0m\n\n";
});
assert(!once);
}
return *this;
}
};
decltype(auto) cin = static_cast<istream &>(std::cin);
} // namespace workspace
#line 10 "Library\\src\\utils\\io\\input.hpp"
namespace workspace {
template <class _Tp = int_least64_t, bool _Is_class = std::is_class<_Tp>::value>
class input {
_Tp __value;
template <class... _Args> struct is_convertible : std::false_type {};
template <class _Arg>
struct is_convertible<_Arg> : std::is_convertible<_Arg, _Tp> {};
public:
operator _Tp &() noexcept { return __value; }
operator const _Tp &() const noexcept { return __value; }
template <class... _Args>
input(_Args &&...__args) noexcept : __value(std::forward<_Args>(__args)...) {
if _CXX17_CONSTEXPR (not is_convertible<_Args...>::value) cin >> __value;
}
};
template <class _Tp> class input<_Tp, true> : public _Tp {
template <class... _Args> struct is_convertible : std::false_type {};
template <class _Arg>
struct is_convertible<_Arg> : std::is_convertible<_Arg, _Tp> {};
public:
operator _Tp &() noexcept { return *this; }
operator const _Tp &() const noexcept { return *this; }
template <class... _Args>
input(_Args &&...__args) noexcept : _Tp(std::forward<_Args>(__args)...) {
if _CXX17_CONSTEXPR (not is_convertible<_Args...>::value) cin >> *this;
}
template <class _E>
input(std::initializer_list<_E> __l) noexcept : _Tp(__l) {}
};
// Integrality.
template <class _Tp>
struct is_integral_ext<input<_Tp>> : is_integral_ext<_Tp> {};
} // namespace workspace
#line 2 "Library\\src\\utils\\io\\print.hpp"
/**
* @file print.hpp
* @brief Print
*/
#line 2 "Library\\src\\utils\\io\\ostream.hpp"
/**
* @file ostream.hpp
* @brief Output Stream
*/
#line 9 "Library\\src\\utils\\io\\ostream.hpp"
#line 11 "Library\\src\\utils\\io\\ostream.hpp"
namespace workspace {
template <class _Os> struct is_ostream {
template <typename... _Args>
static std::true_type __test(std::basic_ostream<_Args...> *);
static std::false_type __test(void *);
constexpr static bool value = decltype(__test(std::declval<_Os *>()))::value;
};
template <class _Os>
using ostream_ref =
typename std::enable_if<is_ostream<_Os>::value, _Os &>::type;
/**
* @brief Stream insertion operator for C-style array.
*
* @param __os Output stream
* @param __a Array
* @return Reference to __os.
*/
template <class _Os, class _Tp, size_t _Nm>
typename std::enable_if<bool(sizeof(_Tp) > 2), ostream_ref<_Os>>::type
operator<<(_Os &__os, const _Tp (&__a)[_Nm]) {
if _CXX17_CONSTEXPR (_Nm) {
__os << *__a;
for (auto __i = __a + 1, __e = __a + _Nm; __i != __e; ++__i)
__os << ' ' << *__i;
}
return __os;
}
/**
* @brief Stream insertion operator for std::array.
*
* @param __os Output stream
* @param __a Array
* @return Reference to __os.
*/
template <class _Os, class _Tp, size_t _Nm>
ostream_ref<_Os> operator<<(_Os &__os, const std::array<_Tp, _Nm> &__a) {
if _CXX17_CONSTEXPR (_Nm) {
__os << __a[0];
for (size_t __i = 1; __i != _Nm; ++__i) __os << ' ' << __a[__i];
}
return __os;
}
/**
* @brief Stream insertion operator for std::pair.
*
* @param __os Output stream
* @param __p Pair
* @return Reference to __os.
*/
template <class _Os, class _T1, class _T2>
ostream_ref<_Os> operator<<(_Os &__os, const std::pair<_T1, _T2> &__p) {
return __os << __p.first << ' ' << __p.second;
}
/**
* @brief Stream insertion operator for std::tuple.
*
* @param __os Output stream
* @param __t Tuple
* @return Reference to __os.
*/
template <class _Os, class _Tp, size_t _Nm = 0>
typename std::enable_if<bool(std::tuple_size<_Tp>::value + 1),
ostream_ref<_Os>>::type
operator<<(_Os &__os, const _Tp &__t) {
if _CXX17_CONSTEXPR (_Nm != std::tuple_size<_Tp>::value) {
if _CXX17_CONSTEXPR (_Nm) __os << ' ';
__os << std::get<_Nm>(__t);
operator<<<_Os, _Tp, _Nm + 1>(__os, __t);
}
return __os;
}
template <class _Os, class _Container,
typename = decltype(std::begin(std::declval<_Container>()))>
typename std::enable_if<
!std::is_convertible<std::decay_t<_Container>, std::string>::value &&
!std::is_convertible<std::decay_t<_Container>, char *>::value,
ostream_ref<_Os>>::type
operator<<(_Os &__os, const _Container &__cont) {
bool __h = true;
for (auto &&__e : __cont) __h ? __h = 0 : (__os << ' ', 0), __os << __e;
return __os;
}
#ifdef __SIZEOF_INT128__
/**
* @brief Stream insertion operator for __int128_t.
*
* @param __os Output Stream
* @param __x 128-bit integer
* @return Reference to __os.
*/
template <class _Os> ostream_ref<_Os> operator<<(_Os &__os, __int128_t __x) {
if (!__x) return __os << '0';
if (__x < 0) __os << '-';
char __s[40], *__p = __s;
while (__x) {
auto __d = __x % 10;
*__p++ = '0' + (__x < 0 ? -__d : __d);
__x /= 10;
}
*__p = 0;
for (char *__t = __s; __t < --__p; ++__t) *__t ^= *__p ^= *__t ^= *__p;
return __os << __s;
}
/**
* @brief Stream insertion operator for __uint128_t.
*
* @param __os Output Stream
* @param __x 128-bit unsigned integer
* @return Reference to __os.
*/
template <class _Os> ostream_ref<_Os> operator<<(_Os &__os, __uint128_t __x) {
if (!__x) return __os << '0';
char __s[40], *__p = __s;
while (__x) *__p++ = '0' + __x % 10, __x /= 10;
*__p = 0;
for (char *__t = __s; __t < --__p; ++__t) *__t ^= *__p ^= *__t ^= *__p;
return __os << __s;
}
#endif
} // namespace workspace
#line 9 "Library\\src\\utils\\io\\print.hpp"
namespace workspace {
/**
* @brief Print
* @tparam _Sep
* @tparam _End
*/
template <char _Sep = ' ', char _End = '\n', class _Tp, class... _Args>
void print(_Tp &&__x, _Args &&...__args) noexcept {
if _CXX17_CONSTEXPR (sizeof...(_Args))
cout << __x << _Sep, print(std::forward<_Args>(__args)...);
else
cout << __x << _End;
}
void flush() noexcept { cout << std::flush; }
} // namespace workspace
#line 13 "other-workspace\\tmp.cpp"
signed main() {
using namespace workspace;
io_setup(15);
/* given
case_info.read(); //*/
/* unspecified
case_info.total = -1; //*/
return case_info.iterate();
}
#line 2 "Library\\src\\graph\\directed\\flow\\Dinic.hpp"
/**
* @file Dinic.hpp
* @brief Dinic's Algorithm
*/
#line 9 "Library\\src\\graph\\directed\\flow\\Dinic.hpp"
#line 2 "Library\\src\\graph\\directed\\flow\\base.hpp"
/**
* @file base.hpp
* @brief Flow Graph
*/
#line 12 "Library\\src\\graph\\directed\\flow\\base.hpp"
namespace workspace {
template <class _Cap, class _Cost = void> class flow_graph {
protected:
class adjacency_impl;
public:
using container_type = std::vector<adjacency_impl>;
using size_type = typename container_type::size_type;
class unweighted_edge {
public:
size_type tail; // Source
size_type head; // Destination
_Cap capacity; // Capacity
_Cap flow; // Flow
unweighted_edge(size_type __s, size_type __d, const _Cap &__u = 1)
: tail(__s), head(__d), capacity(__u), flow(0) {
assert(!(capacity < static_cast<_Cap>(0))),
assert(!(flow < static_cast<_Cap>(0)));
}
// tail, head, capacity, flow
template <class _Os>
friend _Os &operator<<(_Os &__os, const unweighted_edge &__e) {
return __os << __e.tail << ' ' << __e.head << ' ' << __e.capacity << ' '
<< __e.flow;
}
protected:
unweighted_edge() = default;
unweighted_edge(size_type __s, size_type __d, const _Cap &__u,
const _Cap &__f)
: tail(__s), head(__d), capacity(__u), flow(__f) {}
unweighted_edge make_rev() const { return {head, tail, flow, capacity}; }
};
class weighted_edge : public unweighted_edge {
public:
_Cost cost; // _Cost
weighted_edge(const unweighted_edge &__e, const _Cost &__c = 0)
: unweighted_edge(__e), cost(__c) {}
weighted_edge(size_type __s, size_type __d, const _Cap &__u = 1,
const _Cost &__c = 0)
: unweighted_edge(__s, __d, __u), cost(__c) {}
// tail, head, capacity, flow, cost
template <class _Os>
friend _Os &operator<<(_Os &__os, const weighted_edge &__e) {
return __os << static_cast<unweighted_edge>(__e) << ' ' << __e.cost;
}
protected:
weighted_edge() = default;
weighted_edge make_rev() const {
return {unweighted_edge::make_rev(), -cost};
}
};
using edge = std::conditional_t<std::is_void<_Cost>::value, unweighted_edge,
weighted_edge>;
protected:
struct edge_impl : edge {
bool aux = false;
edge_impl *rev = nullptr;
edge_impl() = default;
edge_impl(const edge &__e) : edge(__e) {}
edge_impl(edge &&__e) : edge(__e) {}
void push(_Cap __f) {
edge::capacity -= __f;
edge::flow += __f;
if (rev) {
rev->capacity += __f;
rev->flow -= __f;
}
}
edge_impl make_rev() {
edge_impl __e = edge::make_rev();
__e.aux = true;
__e.rev = this;
return __e;
}
};
public:
class adjacency {
public:
using value_type = edge;
using reference = edge &;
using const_reference = edge const &;
using pointer = edge *;
using const_pointer = const edge *;
class iterator {
edge_impl *__p;
public:
iterator(edge_impl *__p = nullptr) : __p(__p) {}
bool operator!=(const iterator &__x) const { return __p != __x.__p; }
bool operator==(const iterator &__x) const { return __p == __x.__p; }
iterator &operator++() {
do ++__p;
while (__p->rev && __p->aux);
return *this;
}
iterator operator++(int) {
auto __cp = *this;
do ++__p;
while (__p->rev && __p->aux);
return __cp;
}
iterator &operator--() {
do --__p;
while (__p->aux);
return *this;
}
iterator operator--(int) {
auto __cp = *this;
do --__p;
while (__p->aux);
return __cp;
}
pointer operator->() const { return __p; }
reference operator*() const { return *__p; }
};
class const_iterator {
const edge_impl *__p;
public:
const_iterator(const edge_impl *__p = nullptr) : __p(__p) {}
bool operator!=(const const_iterator &__x) const {
return __p != __x.__p;
}
bool operator==(const const_iterator &__x) const {
return __p == __x.__p;
}
const_iterator &operator++() {
do ++__p;
while (__p->rev && __p->aux);
return *this;
}
const_iterator operator++(int) {
auto __cp = *this;
do ++__p;
while (__p->rev && __p->aux);
return __cp;
}
const_iterator &operator--() {
do --__p;
while (__p->aux);
return *this;
}
const_iterator operator--(int) {
auto __cp = *this;
do --__p;
while (__p->aux);
return __cp;
}
const_pointer operator->() const { return __p; }
const_reference operator*() const { return *__p; }
};
adjacency()
: first(new edge_impl[2]), last(first + 1), __s(first), __t(first) {}
~adjacency() { delete[] first; }
const_reference operator[](size_type __i) const {
assert(__i < size());
return *(first + __i);
}
size_type size() const { return __t - first; }
auto begin() { return iterator{__s}; }
auto begin() const { return const_iterator{__s}; }
auto end() { return iterator{__t}; }
auto end() const { return const_iterator{__t}; }
/**
* @brief Construct a new adjacency object
*
* @param __x Rvalue reference to another object
*/
adjacency(adjacency &&__x) : first(nullptr) { operator=(std::move(__x)); }
/**
* @brief Assignment operator.
*
* @param __x Rvalue reference to another object
* @return Reference to this object.
*/
adjacency &operator=(adjacency &&__x) {
delete[] first;
first = __x.first, __x.first = nullptr;
last = __x.last, __s = __x.__s, __t = __x.__t;
return *this;
}
protected:
edge_impl *first, *last, *__s, *__t;
};
using value_type = adjacency;
using reference = adjacency &;
using const_reference = adjacency const &;
protected:
class adjacency_impl : public adjacency {
public:
using _Base = adjacency;
using _Base::__s;
using _Base::__t;
using _Base::first;
using _Base::last;
using iterator = edge_impl *;
iterator push(const edge_impl &__e) {
realloc();
*__t = __e;
if (__s->aux) ++__s;
return __t++;
}
iterator push(edge_impl &&__e) {
realloc();
*__t = std::move(__e);
if (__s->aux) ++__s;
return __t++;
}
iterator begin() const { return first; }
iterator end() const { return __t; }
void realloc() {
if (__t == last) {
size_type __n(last - first);
iterator loc = new edge_impl[__n << 1 | 1];
__s += loc - first;
__t = loc;
for (iterator __p{first}; __p != last; ++__p, ++__t) {
*__t = *__p;
if (__p->rev) __p->rev->rev = __t;
}
delete[] first;
first = loc;
last = __t + __n;
}
}
};
// Only member variable.
container_type graph;
public:
/**
* @brief Construct a new flow graph object
*
* @param __n Number of vertices
*/
flow_graph(size_type __n = 0) : graph(__n) {}
/**
* @brief Construct a new flow graph object
*
* @param __x Const reference to another object
*/
flow_graph(const flow_graph &__x) : graph(__x.size()) {
for (auto &&__adj : __x)
for (auto &&__e : __adj) add_edge(__e);
}
/**
* @brief Construct a new flow graph object
*
* @param __x Rvalue reference to another object
*/
flow_graph(flow_graph &&__x) : graph(std::move(__x.graph)) {}
/**
* @brief Assignment operator.
*
* @param __x Const reference to another object
* @return Reference to this object.
*/
flow_graph &operator=(const flow_graph &__x) {
return operator=(std::move(flow_graph{__x}));
}
/**
* @brief Assignment operator.
*
* @param __x Rvalue reference to another object
* @return Reference to this object.
*/
flow_graph &operator=(flow_graph &&__x) {
graph = std::move(__x.graph);
return *this;
}
/**
* @return Whether the graph is empty.
*/
bool empty() const { return graph.empty(); }
/**
* @return Number of nodes.
*/
size_type size() const { return graph.size(); }
/**
* @param node Node
* @return Referece to the adjacency list of the node.
*/
reference operator[](size_type node) {
assert(node < size());
return graph[node];
}
/**
* @param node Node
* @return Const referece to the adjacency list of the node.
*/
const_reference operator[](size_type node) const {
assert(node < size());
return graph[node];
}
class iterator : public container_type::iterator {
using _Base = typename container_type::iterator;
public:
using reference = adjacency &;
using pointer = adjacency *;
iterator(const _Base &__i) : _Base(__i) {}
pointer operator->() const { return _Base::operator->(); }
reference operator*() const { return _Base::operator*(); }
};
class const_iterator : public container_type::const_iterator {
using _Base = typename container_type::const_iterator;
public:
using const_reference = const adjacency &;
using const_pointer = const adjacency *;
const_iterator(const _Base &__i) : _Base(__i) {}
const_pointer operator->() const { return _Base::operator->(); }
const_reference operator*() const { return _Base::operator*(); }
};
auto begin() { return iterator{graph.begin()}; }
auto begin() const { return const_iterator{graph.begin()}; }
auto end() { return iterator{graph.end()}; }
auto end() const { return const_iterator{graph.end()}; }
/**
* @brief Add a node to the graph.
*
* @return Index of the node.
*/
size_type add_node() { return add_nodes(1).front(); }
/**
* @brief Add some nodes to the graph.
*
* @param __n Number of nodes added
* @return List of indices of the nodes.
*/
std::vector<size_type> add_nodes(size_type __n) noexcept {
std::vector<size_type> __nodes(__n);
std::iota(__nodes.begin(), __nodes.end(), graph.size());
graph.resize(graph.size() + __n);
return __nodes;
}
/**
* @brief Add a directed edge to the graph.
*
* @return Reference to the edge.
*/
template <class... _Args>
typename std::enable_if<std::is_constructible<edge, _Args...>::value,
edge &>::type
add_edge(_Args &&...__args) {
edge_impl __e = edge(std::forward<_Args>(__args)...);
assert(__e.tail < size()), assert(__e.head < size());
edge_impl *__p = graph[__e.tail].push(std::move(__e));
// Careful with a self loop.
if (__p->tail != __p->head)
__p->rev = graph[__p->head].push(__p->make_rev());
return *__p;
}
/**
* @brief Add an undirected edge to the graph. Its cost must be non-negative.
*
* @return Reference to the edge.
*/
template <class... _Args> edge &add_undirected_edge(_Args &&...__args) {
edge_impl __e = edge(std::forward<_Args>(__args)...);
assert(__e.tail < size()), assert(__e.head < size());
__e.flow += __e.capacity;
edge_impl *__p = graph[__e.tail].push(std::move(__e));
// Careful with a self loop.
if (__p->tail != __p->head) {
edge_impl __r = __p->make_rev();
__r.aux = false;
__p->rev = graph[__p->head].push(std::move(__r));
}
return *__p;
}
template <class _Os>
friend _Os &operator<<(_Os &__os, flow_graph const &__g) {
for (const auto &__adj : __g)
for (const auto &__e : __adj) __os << __e << "\n";
return __os;
}
};
} // namespace workspace
#line 11 "Library\\src\\graph\\directed\\flow\\Dinic.hpp"
namespace workspace {
/**
* @brief Compute the maximum flow.
* @tparam _Cap Capacity type
*/
template <class _Cap> class Dinic : public flow_graph<_Cap> {
using _Base = flow_graph<_Cap>;
public:
using _Base::_Base;
using typename _Base::size_type;
protected:
constexpr static size_type nil = -1;
std::vector<size_type> __level;
std::vector<typename _Base::container_type::value_type::iterator> __iter;
_Cap dfs(size_type __src, size_type __dst, _Cap __limit) noexcept {
if (__src == __dst) return __limit;
_Cap __flow(0);
for (auto &__e{__iter[__dst]}; __e != _Base::graph[__dst].end(); ++__e)
if (static_cast<_Cap>(0) < __e->flow &&
__level[__e->head] < __level[__dst])
if (_Cap achv = dfs(__src, __e->head, std::min(__limit, __e->flow));
static_cast<_Cap>(0) < achv) {
__e->push(-achv);
__flow += achv, __limit -= achv;
if (__limit == static_cast<_Cap>(0)) break;
}
return __flow;
}
public:
/**
* @brief Run Dinic's algorithm.
* @param __src Source
* @param __dst Destination
* @return Maximum flow.
*/
_Cap run(size_type __src, size_type __dst) noexcept {
return run(__src, __dst, std::numeric_limits<_Cap>::max());
}
/**
* @brief Run Dinic's algorithm.
* @param __src Source
* @param __dst Destination
* @param __limit Flow limit
* @return Maximum flow.
*/
_Cap run(size_type __src, size_type __dst, _Cap __limit) noexcept {
assert(__src < _Base::size()), assert(__dst < _Base::size()),
assert(__src != __dst);
__level.resize(_Base::size(), nil);
__iter.resize(_Base::size());
if (!(static_cast<_Cap>(0) < __limit)) return 0;
_Cap __flow = 0;
for (std::vector<size_type> __q(_Base::size());;
std::fill(__level.begin(), __level.end(), nil)) {
__level[__q.front() = __src] = 0;
for (auto __ql{__q.begin()}, __qr{std::next(__ql)};
__level[__dst] == nil && __ql != __qr; ++__ql)
for (const auto &__e : _Base::graph[*__ql])
if (static_cast<_Cap>(0) < __e.capacity && __level[__e.head] == nil)
__level[ *__qr++ = __e.head] = __level[*__ql] + 1;
if (__level[__dst] == nil) break;
for (size_type __x{}; __x != _Base::size(); ++__x)
__iter[__x] = _Base::graph[__x].begin();
__flow += dfs(__src, __dst, __limit);
}
return __flow;
}
// Minimum Cut.
// Call it after `run`.
auto min_cut() const noexcept {
std::vector<typename _Base::edge> __cut;
for (size_type __x{}; __x != _Base::size(); ++__x)
if (~__level[__x])
for (const auto &__e : _Base::operator[](__x))
if (!~__level[__e.head]) __cut.emplace_back(__e);
return __cut;
}
};
} // namespace workspace
#line 29 "other-workspace\\tmp.cpp"
namespace workspace {
void main() {
// start here!
input N;
Dinic<i32> dinic;
vector<pair<i32, i32>> od, ev;
for (auto i : range(N)) {
input a;
if (popcount((i64)a) & 1) {
od.emplace_back(dinic.add_node(), a);
} else {
ev.emplace_back(dinic.add_node(), a);
}
}
for (auto [u, a] : od) {
for (auto [v, b] : ev) {
if (popcount(a ^ b) == 1) {
dinic.add_edge(u, v, 1);
}
}
}
auto S = dinic.add_node();
auto T = dinic.add_node();
for (auto &&[u, a] : od) {
dinic.add_edge(S, u, 1);
}
for (auto &&[v, b] : ev) {
dinic.add_edge(v, T, 1);
}
print(dinic.size() - 2 - dinic.run(S, T));
}
} // namespace workspace
/**
* @note
*/
jell