結果
| 問題 | 
                            No.1099 Range Square Sum
                             | 
                    
| コンテスト | |
| ユーザー | 
                             | 
                    
| 提出日時 | 2022-04-17 17:58:53 | 
| 言語 | PyPy3  (7.3.15)  | 
                    
| 結果 | 
                             
                                TLE
                                 
                             
                            
                            (最新)
                                AC
                                 
                             
                            (最初)
                            
                            
                         | 
                    
| 実行時間 | - | 
| コード長 | 5,105 bytes | 
| コンパイル時間 | 314 ms | 
| コンパイル使用メモリ | 81,824 KB | 
| 実行使用メモリ | 281,232 KB | 
| 最終ジャッジ日時 | 2024-12-26 11:22:21 | 
| 合計ジャッジ時間 | 22,096 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge3 / judge4 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 1 | 
| other | AC * 25 TLE * 5 | 
ソースコード
"""
a <- a + x
a^2 <- a^2 + 2ax + x^2
"""
class lazy_segtree():
    def __init__(self, lst, ope, e, mapping, composition, id_):
        self.n = len(lst)
        self.log = (self.n - 1).bit_length()
        self.size = 1 << self.log
        self.data = [e for _ in range(2 * self.size)]
        self.lz = [id_ for _ in range(self.size)]
        self.e = e
        self.op = ope
        self.mapping = mapping
        self.composition = composition
        self.identity = id_
        for i in range(self.n):
            self.data[self.size + i] = lst[i]
        for i in range(self.size - 1, 0, -1):
            self.update(i)
        
    def update(self, k):
        self.data[k] = self.op(self.data[2 * k], self.data[2 * k + 1])
        
    def all_apply(self, k, f):
        self.data[k] = self.mapping(f, self.data[k])
        if k < self.size:
            self.lz[k] = self.composition(f, self.lz[k])
    def push(self, k):
        self.all_apply(2 * k, self.lz[k])
        self.all_apply(2 * k + 1, self.lz[k])
        self.lz[k] = self.identity
    def set(self, p, x):
        p += self.size
        for i in range(self.log, 0, -1):
            self.push(p >> i)
        self.data[p] = x
        for i in range(1, self.log + 1):
            self.update(p >> i)
    def get(self, p):
        p += self.size
        for i in range(self.log, 0, -1):
            self.push(p >> i)
        return self.data[p]
    def prod(self, l, r):
        if l == r: return self.e
        l += self.size
        r += self.size
        for i in range(self.log, 0, -1):
            if (l >> i) << i != l:
                self.push(l >> i)
            if (r >> i) << i != r:
                self.push(r >> i)
        sml, smr = self.e, self.e
        while l < r:
            if l & 1:
                sml = self.op(sml, self.data[l])
                l += 1
            if r & 1:
                r -= 1
                smr = self.op(self.data[r], smr)
            l >>= 1
            r >>= 1
        return self.op(sml, smr)
    def all_prod(self):
        return self.data[1]
    def apply_point(self, p, f):
        p += self.size
        for i in range(self.log, 0, -1):
            self.push(p >> i)
        self.data[p] = self.mapping(f, self.data[p])
        for i in range(1, self.log + 1):
            self.update(p >> i)
    def apply(self, l, r, f):
        if l == r: return
        l += self.size
        r += self.size
        for i in range(self.log, 0, -1):
            if (l >> i) << i != l:
                self.push(l >> i)
            if (r >> i) << i != r:
                self.push((r - 1) >> i)
        l2, r2 = l, r
        while l < r:
            if l & 1:
                self.all_apply(l, f)
                l += 1
            if r & 1:
                r -= 1
                self.all_apply(r, f)
            l >>= 1
            r >>= 1
        l, r = l2, r2
        for i in range(1, self.log + 1):
            if (l >> i) << i != l:
                self.update(l >> i)
            if (r >> i) << i != r:
                self.update((r - 1) >> i)
    def max_right(self, l, g):
        if l == self.n: return self.n
        l += self.size
        for i in range(self.log, 0, -1):
            self.push(l >> i)
        sm = self.e
        while 1:
            while i % 2 == 0:
                l >>= 1
            if not g(self.op(sm, self.data[l])):
                while l < self.size:
                    self.push(l)
                    l *= 2
                    if g(self.op(sm, self.data[l])):
                        sm = self.op(sm, self.data[l])
                        l += 1
                return l - self.size
            sm = self.op(sm, self.data[l])
            l += 1
            if l & -l == l:
                break
        return self.n
    def min_left(self, r, g):
        if r == 0:
            return 0
        r += self.size
        for i in range(self.log, 0, -1):
            self.push((r - 1) >> i)
        sm = self.e
        while 1:
            r -= 1
            while r > 1 and r % 2 == 1:
                r >>= 1
            if not g(self.op(self.data[r], sm)):
                while r < self.size:
                    self.push(r)
                    r = 2 * r + 1
                    if g(self.op(self.data[r], sm)):
                        sm = self.op(self.data[r], sm)
                        r -= 1
                return r + 1 - self.size
            sm = self.op(self.data[r], sm)
            if r & -r == r:
                break
        return 0
n = int(input())
A = list(map(int, input().split()))
def ope(x, y):
    return (x[0] + y[0], x[1] + y[1], x[2] + y[2])
e = (0, 0, 0)
def mapping(f, x):
    return (x[0], x[1] + f * x[0], x[2] + 2 * x[1] * f + x[0] * f * f)
def composition(f, g):
    return f + g
seg = lazy_segtree([(1, a, a * a) for a in A], ope, e, mapping, composition, 0)
Q = int(input())
for _ in range(Q):
    query = list(map(int, input().split()))
    if query[0] == 1:
        l, r, x = query[1:]
        seg.apply(l - 1, r, x)
    else:
        l, r = query[1:]
        print(seg.prod(l - 1, r)[2])