結果

問題 No.1099 Range Square Sum
ユーザー 👑 rin204
提出日時 2022-04-17 17:58:53
言語 PyPy3
(7.3.15)
結果
TLE  
(最新)
AC  
(最初)
実行時間 -
コード長 5,105 bytes
コンパイル時間 314 ms
コンパイル使用メモリ 81,824 KB
実行使用メモリ 281,232 KB
最終ジャッジ日時 2024-12-26 11:22:21
合計ジャッジ時間 22,096 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 25 TLE * 5
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

"""
a <- a + x
a^2 <- a^2 + 2ax + x^2
"""
class lazy_segtree():
def __init__(self, lst, ope, e, mapping, composition, id_):
self.n = len(lst)
self.log = (self.n - 1).bit_length()
self.size = 1 << self.log
self.data = [e for _ in range(2 * self.size)]
self.lz = [id_ for _ in range(self.size)]
self.e = e
self.op = ope
self.mapping = mapping
self.composition = composition
self.identity = id_
for i in range(self.n):
self.data[self.size + i] = lst[i]
for i in range(self.size - 1, 0, -1):
self.update(i)
def update(self, k):
self.data[k] = self.op(self.data[2 * k], self.data[2 * k + 1])
def all_apply(self, k, f):
self.data[k] = self.mapping(f, self.data[k])
if k < self.size:
self.lz[k] = self.composition(f, self.lz[k])
def push(self, k):
self.all_apply(2 * k, self.lz[k])
self.all_apply(2 * k + 1, self.lz[k])
self.lz[k] = self.identity
def set(self, p, x):
p += self.size
for i in range(self.log, 0, -1):
self.push(p >> i)
self.data[p] = x
for i in range(1, self.log + 1):
self.update(p >> i)
def get(self, p):
p += self.size
for i in range(self.log, 0, -1):
self.push(p >> i)
return self.data[p]
def prod(self, l, r):
if l == r: return self.e
l += self.size
r += self.size
for i in range(self.log, 0, -1):
if (l >> i) << i != l:
self.push(l >> i)
if (r >> i) << i != r:
self.push(r >> i)
sml, smr = self.e, self.e
while l < r:
if l & 1:
sml = self.op(sml, self.data[l])
l += 1
if r & 1:
r -= 1
smr = self.op(self.data[r], smr)
l >>= 1
r >>= 1
return self.op(sml, smr)
def all_prod(self):
return self.data[1]
def apply_point(self, p, f):
p += self.size
for i in range(self.log, 0, -1):
self.push(p >> i)
self.data[p] = self.mapping(f, self.data[p])
for i in range(1, self.log + 1):
self.update(p >> i)
def apply(self, l, r, f):
if l == r: return
l += self.size
r += self.size
for i in range(self.log, 0, -1):
if (l >> i) << i != l:
self.push(l >> i)
if (r >> i) << i != r:
self.push((r - 1) >> i)
l2, r2 = l, r
while l < r:
if l & 1:
self.all_apply(l, f)
l += 1
if r & 1:
r -= 1
self.all_apply(r, f)
l >>= 1
r >>= 1
l, r = l2, r2
for i in range(1, self.log + 1):
if (l >> i) << i != l:
self.update(l >> i)
if (r >> i) << i != r:
self.update((r - 1) >> i)
def max_right(self, l, g):
if l == self.n: return self.n
l += self.size
for i in range(self.log, 0, -1):
self.push(l >> i)
sm = self.e
while 1:
while i % 2 == 0:
l >>= 1
if not g(self.op(sm, self.data[l])):
while l < self.size:
self.push(l)
l *= 2
if g(self.op(sm, self.data[l])):
sm = self.op(sm, self.data[l])
l += 1
return l - self.size
sm = self.op(sm, self.data[l])
l += 1
if l & -l == l:
break
return self.n
def min_left(self, r, g):
if r == 0:
return 0
r += self.size
for i in range(self.log, 0, -1):
self.push((r - 1) >> i)
sm = self.e
while 1:
r -= 1
while r > 1 and r % 2 == 1:
r >>= 1
if not g(self.op(self.data[r], sm)):
while r < self.size:
self.push(r)
r = 2 * r + 1
if g(self.op(self.data[r], sm)):
sm = self.op(self.data[r], sm)
r -= 1
return r + 1 - self.size
sm = self.op(self.data[r], sm)
if r & -r == r:
break
return 0
n = int(input())
A = list(map(int, input().split()))
def ope(x, y):
return (x[0] + y[0], x[1] + y[1], x[2] + y[2])
e = (0, 0, 0)
def mapping(f, x):
return (x[0], x[1] + f * x[0], x[2] + 2 * x[1] * f + x[0] * f * f)
def composition(f, g):
return f + g
seg = lazy_segtree([(1, a, a * a) for a in A], ope, e, mapping, composition, 0)
Q = int(input())
for _ in range(Q):
query = list(map(int, input().split()))
if query[0] == 1:
l, r, x = query[1:]
seg.apply(l - 1, r, x)
else:
l, r = query[1:]
print(seg.prod(l - 1, r)[2])
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0