結果

問題 No.1099 Range Square Sum
ユーザー 👑 rin204rin204
提出日時 2022-04-17 18:00:21
言語 PyPy3
(7.3.15)
結果
TLE  
(最新)
AC  
(最初)
実行時間 -
コード長 5,143 bytes
コンパイル時間 327 ms
コンパイル使用メモリ 82,336 KB
実行使用メモリ 282,488 KB
最終ジャッジ日時 2024-06-07 23:58:23
合計ジャッジ時間 17,779 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 37 ms
53,376 KB
testcase_01 AC 39 ms
53,248 KB
testcase_02 AC 42 ms
53,376 KB
testcase_03 AC 38 ms
53,760 KB
testcase_04 AC 38 ms
53,376 KB
testcase_05 AC 38 ms
53,504 KB
testcase_06 AC 37 ms
53,248 KB
testcase_07 AC 39 ms
53,248 KB
testcase_08 AC 37 ms
53,388 KB
testcase_09 AC 38 ms
53,376 KB
testcase_10 AC 38 ms
53,760 KB
testcase_11 AC 140 ms
78,764 KB
testcase_12 AC 138 ms
77,496 KB
testcase_13 AC 144 ms
78,340 KB
testcase_14 AC 137 ms
78,844 KB
testcase_15 AC 138 ms
77,724 KB
testcase_16 AC 145 ms
78,400 KB
testcase_17 AC 146 ms
78,220 KB
testcase_18 AC 134 ms
78,228 KB
testcase_19 AC 139 ms
78,204 KB
testcase_20 AC 139 ms
77,856 KB
testcase_21 AC 1,995 ms
282,452 KB
testcase_22 TLE -
testcase_23 TLE -
testcase_24 AC 1,949 ms
280,124 KB
testcase_25 AC 1,997 ms
282,488 KB
testcase_26 AC 789 ms
154,416 KB
testcase_27 AC 794 ms
153,832 KB
testcase_28 AC 791 ms
153,524 KB
testcase_29 AC 799 ms
153,868 KB
testcase_30 AC 822 ms
154,932 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

"""
a <- a + x
a^2 <- a^2 + 2ax + x^2
"""
import sys
input = sys.stdin.readline

class lazy_segtree():
    def __init__(self, lst, ope, e, mapping, composition, id_):
        self.n = len(lst)
        self.log = (self.n - 1).bit_length()
        self.size = 1 << self.log
        self.data = [e for _ in range(2 * self.size)]
        self.lz = [id_ for _ in range(self.size)]
        self.e = e
        self.op = ope
        self.mapping = mapping
        self.composition = composition
        self.identity = id_
        for i in range(self.n):
            self.data[self.size + i] = lst[i]
        for i in range(self.size - 1, 0, -1):
            self.update(i)
        
    def update(self, k):
        self.data[k] = self.op(self.data[2 * k], self.data[2 * k + 1])
        
    def all_apply(self, k, f):
        self.data[k] = self.mapping(f, self.data[k])
        if k < self.size:
            self.lz[k] = self.composition(f, self.lz[k])

    def push(self, k):
        self.all_apply(2 * k, self.lz[k])
        self.all_apply(2 * k + 1, self.lz[k])
        self.lz[k] = self.identity

    def set(self, p, x):
        p += self.size
        for i in range(self.log, 0, -1):
            self.push(p >> i)
        self.data[p] = x
        for i in range(1, self.log + 1):
            self.update(p >> i)

    def get(self, p):
        p += self.size
        for i in range(self.log, 0, -1):
            self.push(p >> i)
        return self.data[p]

    def prod(self, l, r):
        if l == r: return self.e
        l += self.size
        r += self.size
        for i in range(self.log, 0, -1):
            if (l >> i) << i != l:
                self.push(l >> i)
            if (r >> i) << i != r:
                self.push(r >> i)
        sml, smr = self.e, self.e
        while l < r:
            if l & 1:
                sml = self.op(sml, self.data[l])
                l += 1
            if r & 1:
                r -= 1
                smr = self.op(self.data[r], smr)
            l >>= 1
            r >>= 1
        return self.op(sml, smr)

    def all_prod(self):
        return self.data[1]

    def apply_point(self, p, f):
        p += self.size
        for i in range(self.log, 0, -1):
            self.push(p >> i)
        self.data[p] = self.mapping(f, self.data[p])
        for i in range(1, self.log + 1):
            self.update(p >> i)

    def apply(self, l, r, f):
        if l == r: return
        l += self.size
        r += self.size
        for i in range(self.log, 0, -1):
            if (l >> i) << i != l:
                self.push(l >> i)
            if (r >> i) << i != r:
                self.push((r - 1) >> i)
        l2, r2 = l, r
        while l < r:
            if l & 1:
                self.all_apply(l, f)
                l += 1
            if r & 1:
                r -= 1
                self.all_apply(r, f)
            l >>= 1
            r >>= 1
        l, r = l2, r2
        for i in range(1, self.log + 1):
            if (l >> i) << i != l:
                self.update(l >> i)
            if (r >> i) << i != r:
                self.update((r - 1) >> i)

    def max_right(self, l, g):
        if l == self.n: return self.n
        l += self.size
        for i in range(self.log, 0, -1):
            self.push(l >> i)
        sm = self.e
        while 1:
            while i % 2 == 0:
                l >>= 1
            if not g(self.op(sm, self.data[l])):
                while l < self.size:
                    self.push(l)
                    l *= 2
                    if g(self.op(sm, self.data[l])):
                        sm = self.op(sm, self.data[l])
                        l += 1
                return l - self.size
            sm = self.op(sm, self.data[l])
            l += 1
            if l & -l == l:
                break
        return self.n

    def min_left(self, r, g):
        if r == 0:
            return 0
        r += self.size
        for i in range(self.log, 0, -1):
            self.push((r - 1) >> i)
        sm = self.e
        while 1:
            r -= 1
            while r > 1 and r % 2 == 1:
                r >>= 1
            if not g(self.op(self.data[r], sm)):
                while r < self.size:
                    self.push(r)
                    r = 2 * r + 1
                    if g(self.op(self.data[r], sm)):
                        sm = self.op(self.data[r], sm)
                        r -= 1
                return r + 1 - self.size
            sm = self.op(self.data[r], sm)
            if r & -r == r:
                break
        return 0



n = int(input())
A = list(map(int, input().split()))

def ope(x, y):
    return (x[0] + y[0], x[1] + y[1], x[2] + y[2])

e = (0, 0, 0)

def mapping(f, x):
    return (x[0], x[1] + f * x[0], x[2] + 2 * x[1] * f + x[0] * f * f)

def composition(f, g):
    return f + g

seg = lazy_segtree([(1, a, a * a) for a in A], ope, e, mapping, composition, 0)

Q = int(input())
for _ in range(Q):
    query = list(map(int, input().split()))
    if query[0] == 1:
        l, r, x = query[1:]
        seg.apply(l - 1, r, x)
    else:
        l, r = query[1:]
        print(seg.prod(l - 1, r)[2])


0