結果
| 問題 |
No.196 典型DP (1)
|
| コンテスト | |
| ユーザー |
tanimani364
|
| 提出日時 | 2022-04-21 10:26:49 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 47 ms / 2,000 ms |
| コード長 | 4,447 bytes |
| コンパイル時間 | 1,799 ms |
| コンパイル使用メモリ | 202,192 KB |
| 最終ジャッジ日時 | 2025-01-28 19:22:23 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 41 |
ソースコード
#include <bits/stdc++.h>
//#include <boost/multiprecision/cpp_int.hpp>
//#include <atcoder/all>
using namespace std;
#define rep(i, a) for (int i = (int)0; i < (int)a; ++i)
#define repl(i, a) for (long long i = (long long)0; i < (long long)a; ++i)
#define rrep(i, a) for (int i = (int)a; i > -1; --i)
#define REP(i, a, b) for (int i = (int)a; i < (int)b; ++i)
#define REPL(i, a, b) for (long long i = (long long)a; i < (long long)b; ++i)
#define RREP(i, a, b) for (int i = (int)a; i > b; --i)
#define pb push_back
#define eb emplace_back
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define popcount __builtin_popcount
#define popcountll __builtin_popcountll
#define fi first
#define se second
using ll = long long;
constexpr ll mod = 1e9 + 7;
constexpr ll mod_998244353 = 998244353;
constexpr ll INF = 1LL << 60;
//#pragma GCC target("avx2")
//#pragma GCC optimize("O3")
//#pragma GCC optimize("unroll-loops")
// using lll = boost::multiprecision::cpp_int;
template <class T>
inline bool chmin(T &a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmax(T &a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
ll mypow(ll x, ll n, const ll &p = -1) { // x^nをmodで割った余り
if (p != -1) {
x = (x % p + p) % p;
}
ll ret = 1;
while (n > 0) {
if (n & 1) {
if (p != -1)
ret = (ret * x) % p;
else
ret *= x;
}
if (p != -1)
x = (x * x) % p;
else
x *= x;
n >>= 1;
}
return ret;
}
template <typename T>
struct myrand {
random_device seed;
mt19937 mt;
myrand() : mt(seed()) {}
T operator()(T a, T b) { //[a,b)
uniform_int_distribution<T> dist(a, b - 1);
return dist(mt);
}
};
//using namespace atcoder;
//------------------------
//-----------------------
//------------------------
//------------------------
//------------------------
template<int mod>
struct Modint{
int x;
Modint():x(0){}
Modint(int64_t y):x((y%mod+mod)%mod){}
Modint &operator+=(const Modint &p){
if((x+=p.x)>=mod)
x -= mod;
return *this;
}
Modint &operator-=(const Modint &p){
if((x+=mod-p.x)>=mod)
x -= mod;
return *this;
}
Modint &operator*=(const Modint &p){
x = (1LL * x * p.x) % mod;
return *this;
}
Modint &operator/=(const Modint &p){
*this *= p.inverse();
return *this;
}
Modint operator-() const { return Modint(-x); }
Modint operator+(const Modint &p) const{
return Modint(*this) += p;
}
Modint operator-(const Modint &p) const{
return Modint(*this) -= p;
}
Modint operator*(const Modint &p) const{
return Modint(*this) *= p;
}
Modint operator/(const Modint &p) const{
return Modint(*this) /= p;
}
bool operator==(const Modint &p) const { return x == p.x; }
bool operator!=(const Modint &p) const{return x != p.x;}
Modint inverse() const{//非再帰拡張ユークリッド
int a = x, b = mod, u = 1, v = 0;
while(b>0){
int t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return Modint(u);
}
Modint pow(int64_t n) const{//繰り返し二乗法
Modint ret(1), mul(x);
while(n>0){
if(n&1)
ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os,const Modint &p){
return os << p.x;
}
};
using modint = Modint<mod>;
using modint2= Modint<mod_998244353>;
vector<modint> dp[2000][3];
void solve() {
int n,k;
cin>>n>>k;
vector<vector<int>>g(n);
rep(i,n-1){
int a,b;
cin>>a>>b;
g[a].eb(b);
g[b].eb(a);
}
auto rec=[&](auto self,int v,int p=-1)->void{//0:白,1:黒
rep(i,2)dp[v][i]=vector<modint>(2);
dp[v][0][0]=1;
dp[v][1][1]=1;
for(int &x:g[v]){
if(x==p)continue;
self(self,x,v);
int sv=dp[v][0].size();
int sx=dp[x][0].size();
vector<modint>nxdp[2];
rep(i,2)nxdp[i].resize(sv+sx-1);
rep(i,sv){
rep(j,sx){
if(i+j>=sv+sx-1)continue;
nxdp[0][i+j]+=dp[v][0][i]*dp[x][0][j];
nxdp[0][i+j]+=dp[v][0][i]*dp[x][1][j];
nxdp[1][i+j]+=dp[v][1][i]*dp[x][1][j];
}
}
rep(i,2)swap(nxdp[i],dp[v][i]);
}
};
rec(rec,0);
modint ans=dp[0][0][k]+dp[0][1][k];
cout<<ans<<"\n";
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(15);
solve();
return 0;
}
tanimani364