結果
| 問題 |
No.1912 Get together 2
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2022-04-22 22:30:30 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 222 ms / 2,000 ms |
| コード長 | 17,865 bytes |
| コンパイル時間 | 2,366 ms |
| コンパイル使用メモリ | 198,776 KB |
| 最終ジャッジ日時 | 2025-01-28 20:28:15 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 33 |
ソースコード
// #pragma comment(linker, "/stack:200000000")
#include <bits/stdc++.h>
#include <limits>
#include <type_traits>
namespace suisen {
// ! utility
template <typename ...Types>
using constraints_t = std::enable_if_t<std::conjunction_v<Types...>, std::nullptr_t>;
template <bool cond_v, typename Then, typename OrElse>
constexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) {
if constexpr (cond_v) {
return std::forward<Then>(then);
} else {
return std::forward<OrElse>(or_else);
}
}
// ! function
template <typename ReturnType, typename Callable, typename ...Args>
using is_same_as_invoke_result = std::is_same<std::invoke_result_t<Callable, Args...>, ReturnType>;
template <typename F, typename T>
using is_uni_op = is_same_as_invoke_result<T, F, T>;
template <typename F, typename T>
using is_bin_op = is_same_as_invoke_result<T, F, T, T>;
template <typename Comparator, typename T>
using is_comparator = std::is_same<std::invoke_result_t<Comparator, T, T>, bool>;
// ! integral
template <typename T, typename = constraints_t<std::is_integral<T>>>
constexpr int bit_num = std::numeric_limits<std::make_unsigned_t<T>>::digits;
template <typename T, unsigned int n>
struct is_nbit { static constexpr bool value = bit_num<T> == n; };
template <typename T, unsigned int n>
static constexpr bool is_nbit_v = is_nbit<T, n>::value;
// ?
template <typename T>
struct safely_multipliable {};
template <>
struct safely_multipliable<int> { using type = long long; };
template <>
struct safely_multipliable<long long> { using type = __int128_t; };
template <>
struct safely_multipliable<unsigned int> { using type = unsigned long long; };
template <>
struct safely_multipliable<unsigned long long> { using type = __uint128_t; };
template <>
struct safely_multipliable<float> { using type = float; };
template <>
struct safely_multipliable<double> { using type = double; };
template <>
struct safely_multipliable<long double> { using type = long double; };
template <typename T>
using safely_multipliable_t = typename safely_multipliable<T>::type;
} // namespace suisen
// ! type aliases
using i128 = __int128_t;
using u128 = __uint128_t;
using ll = long long;
using uint = unsigned int;
using ull = unsigned long long;
template <typename T> using vec = std::vector<T>;
template <typename T> using vec2 = vec<vec <T>>;
template <typename T> using vec3 = vec<vec2<T>>;
template <typename T> using vec4 = vec<vec3<T>>;
template <typename T>
using pq_greater = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <typename T, typename U>
using umap = std::unordered_map<T, U>;
// ! macros (capital: internal macro)
#define OVERLOAD2(_1,_2,name,...) name
#define OVERLOAD3(_1,_2,_3,name,...) name
#define OVERLOAD4(_1,_2,_3,_4,name,...) name
#define REP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l);i<(r);i+=(s))
#define REP3(i,l,r) REP4(i,l,r,1)
#define REP2(i,n) REP3(i,0,n)
#define REPINF3(i,l,s) for(std::remove_reference_t<std::remove_const_t<decltype(l)>>i=(l);;i+=(s))
#define REPINF2(i,l) REPINF3(i,l,1)
#define REPINF1(i) REPINF2(i,0)
#define RREP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l)+fld((r)-(l)-1,s)*(s);i>=(l);i-=(s))
#define RREP3(i,l,r) RREP4(i,l,r,1)
#define RREP2(i,n) RREP3(i,0,n)
#define rep(...) OVERLOAD4(__VA_ARGS__, REP4 , REP3 , REP2 )(__VA_ARGS__)
#define rrep(...) OVERLOAD4(__VA_ARGS__, RREP4 , RREP3 , RREP2 )(__VA_ARGS__)
#define repinf(...) OVERLOAD3(__VA_ARGS__, REPINF3, REPINF2, REPINF1)(__VA_ARGS__)
#define CAT_I(a, b) a##b
#define CAT(a, b) CAT_I(a, b)
#define UNIQVAR(tag) CAT(tag, __LINE__)
#define loop(n) for (std::remove_reference_t<std::remove_const_t<decltype(n)>> UNIQVAR(loop_variable) = n; UNIQVAR(loop_variable) --> 0;)
#define all(iterable) (iterable).begin(), (iterable).end()
#define input(type, ...) type __VA_ARGS__; read(__VA_ARGS__)
// ! I/O utilities
// pair
template <typename T, typename U>
std::ostream& operator<<(std::ostream& out, const std::pair<T, U> &a) {
return out << a.first << ' ' << a.second;
}
// tuple
template <unsigned int N = 0, typename ...Args>
std::ostream& operator<<(std::ostream& out, const std::tuple<Args...> &a) {
if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) {
return out;
} else {
out << std::get<N>(a);
if constexpr (N + 1 < std::tuple_size_v<std::tuple<Args...>>) {
out << ' ';
}
return operator<<<N + 1>(out, a);
}
}
// vector
template <typename T>
std::ostream& operator<<(std::ostream& out, const std::vector<T> &a) {
for (auto it = a.begin(); it != a.end();) {
out << *it;
if (++it != a.end()) out << ' ';
}
return out;
}
// array
template <typename T, size_t N>
std::ostream& operator<<(std::ostream& out, const std::array<T, N> &a) {
for (auto it = a.begin(); it != a.end();) {
out << *it;
if (++it != a.end()) out << ' ';
}
return out;
}
inline void print() { std::cout << '\n'; }
template <typename Head, typename... Tail>
inline void print(const Head &head, const Tail &...tails) {
std::cout << head;
if (sizeof...(tails)) std::cout << ' ';
print(tails...);
}
template <typename Iterable>
auto print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") -> decltype(std::cout << *v.begin(), void()) {
for (auto it = v.begin(); it != v.end();) {
std::cout << *it;
if (++it != v.end()) std::cout << sep;
}
std::cout << end;
}
// pair
template <typename T, typename U>
std::istream& operator>>(std::istream& in, std::pair<T, U> &a) {
return in >> a.first >> a.second;
}
// tuple
template <unsigned int N = 0, typename ...Args>
std::istream& operator>>(std::istream& in, std::tuple<Args...> &a) {
if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) {
return in;
} else {
return operator>><N + 1>(in >> std::get<N>(a), a);
}
}
// vector
template <typename T>
std::istream& operator>>(std::istream& in, std::vector<T> &a) {
for (auto it = a.begin(); it != a.end(); ++it) in >> *it;
return in;
}
// array
template <typename T, size_t N>
std::istream& operator>>(std::istream& in, std::array<T, N> &a) {
for (auto it = a.begin(); it != a.end(); ++it) in >> *it;
return in;
}
template <typename ...Args>
void read(Args &...args) {
( std::cin >> ... >> args );
}
// ! integral utilities
// Returns pow(-1, n)
template <typename T>
constexpr inline int pow_m1(T n) {
return -(n & 1) | 1;
}
// Returns pow(-1, n)
template <>
constexpr inline int pow_m1<bool>(bool n) {
return -int(n) | 1;
}
// Returns floor(x / y)
template <typename T>
constexpr inline T fld(const T x, const T y) {
return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y;
}
template <typename T>
constexpr inline T cld(const T x, const T y) {
return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y;
}
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr>
constexpr inline int popcount(const T x) { return __builtin_popcount(x); }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>
constexpr inline int popcount(const T x) { return __builtin_popcount(x); }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>
constexpr inline int popcount(const T x) { return __builtin_popcountll(x); }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr>
constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>
constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>
constexpr inline int count_lz(const T x) { return x ? __builtin_clzll(x) : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr>
constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>
constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>
constexpr inline int count_tz(const T x) { return x ? __builtin_ctzll(x) : suisen::bit_num<T>; }
template <typename T>
constexpr inline int floor_log2(const T x) { return suisen::bit_num<T> - 1 - count_lz(x); }
template <typename T>
constexpr inline int ceil_log2(const T x) { return floor_log2(x) + ((x & -x) != x); }
template <typename T>
constexpr inline int kth_bit(const T x, const unsigned int k) { return (x >> k) & 1; }
template <typename T>
constexpr inline int parity(const T x) { return popcount(x) & 1; }
struct all_subset {
struct all_subset_iter {
const int s; int t;
constexpr all_subset_iter(int s) : s(s), t(s + 1) {}
constexpr auto operator*() const { return t; }
constexpr auto operator++() {}
constexpr auto operator!=(std::nullptr_t) { return t ? (--t &= s, true) : false; }
};
int s;
constexpr all_subset(int s) : s(s) {}
constexpr auto begin() { return all_subset_iter(s); }
constexpr auto end() { return nullptr; }
};
// ! container
template <typename T, typename Comparator, suisen::constraints_t<suisen::is_comparator<Comparator, T>> = nullptr>
auto priqueue_comp(const Comparator comparator) {
return std::priority_queue<T, std::vector<T>, Comparator>(comparator);
}
template <typename Iterable>
auto isize(const Iterable &iterable) -> decltype(int(iterable.size())) {
return iterable.size();
}
template <typename T, typename Gen, suisen::constraints_t<suisen::is_same_as_invoke_result<T, Gen, int>> = nullptr>
auto generate_vector(int n, Gen generator) {
std::vector<T> v(n);
for (int i = 0; i < n; ++i) v[i] = generator(i);
return v;
}
template <typename T>
auto generate_range_vector(T l, T r) {
return generate_vector(r - l, [l](int i) { return l + i; });
}
template <typename T>
auto generate_range_vector(T n) {
return generate_range_vector(0, n);
}
template <typename T>
void sort_unique_erase(std::vector<T> &a) {
std::sort(a.begin(), a.end());
a.erase(std::unique(a.begin(), a.end()), a.end());
}
template <typename InputIterator, typename BiConsumer>
auto foreach_adjacent_values(InputIterator first, InputIterator last, BiConsumer f) -> decltype(f(*first++, *last), void()) {
if (first != last) for (auto itr = first, itl = itr++; itr != last; itl = itr++) f(*itl, *itr);
}
template <typename Container, typename BiConsumer>
auto foreach_adjacent_values(Container c, BiConsumer f) -> decltype(c.begin(), c.end(), void()){
foreach_adjacent_values(c.begin(), c.end(), f);
}
// ! other utilities
// x <- min(x, y). returns true iff `x` has chenged.
template <typename T>
inline bool chmin(T &x, const T &y) {
if (y >= x) return false;
x = y;
return true;
}
// x <- max(x, y). returns true iff `x` has chenged.
template <typename T>
inline bool chmax(T &x, const T &y) {
if (y <= x) return false;
x = y;
return true;
}
namespace suisen {}
using namespace suisen;
using namespace std;
struct io_setup {
io_setup(int precision = 20) {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::cout << std::fixed << std::setprecision(precision);
}
} io_setup_{};
// ! code from here
#include <cassert>
#include <utility>
#include <vector>
namespace suisen {
namespace default_operator {
template <typename T>
auto zero() -> decltype(T { 0 }) { return T { 0 }; }
template <typename T>
auto one() -> decltype(T { 1 }) { return T { 1 }; }
template <typename T>
auto add(const T &x, const T &y) -> decltype(x + y) { return x + y; }
template <typename T>
auto sub(const T &x, const T &y) -> decltype(x - y) { return x - y; }
template <typename T>
auto mul(const T &x, const T &y) -> decltype(x * y) { return x * y; }
template <typename T>
auto div(const T &x, const T &y) -> decltype(x / y) { return x / y; }
template <typename T>
auto mod(const T &x, const T &y) -> decltype(x % y) { return x % y; }
template <typename T>
auto neg(const T &x) -> decltype(-x) { return -x; }
template <typename T>
auto inv(const T &x) -> decltype(one<T>() / x) { return one<T>() / x; }
} // default_operator
namespace default_operator_noref {
template <typename T>
auto zero() -> decltype(T { 0 }) { return T { 0 }; }
template <typename T>
auto one() -> decltype(T { 1 }) { return T { 1 }; }
template <typename T>
auto add(T x, T y) -> decltype(x + y) { return x + y; }
template <typename T>
auto sub(T x, T y) -> decltype(x - y) { return x - y; }
template <typename T>
auto mul(T x, T y) -> decltype(x * y) { return x * y; }
template <typename T>
auto div(T x, T y) -> decltype(x / y) { return x / y; }
template <typename T>
auto mod(T x, T y) -> decltype(x % y) { return x % y; }
template <typename T>
auto neg(T x) -> decltype(-x) { return -x; }
template <typename T>
auto inv(T x) -> decltype(one<T>() / x) { return one<T>() / x; }
} // default_operator
} // namespace suisen
namespace suisen {
namespace kronecker_power_transform {
namespace internal {
template <typename UnitTransform, typename ReferenceGetter, std::size_t... Seq>
void unit_transform(UnitTransform transform, ReferenceGetter ref_getter, std::index_sequence<Seq...>) {
transform(ref_getter(Seq)...);
}
}
template <typename T, std::size_t D, auto unit_transform>
void kronecker_power_transform(std::vector<T> &x) {
const std::size_t n = x.size();
for (std::size_t block = 1; block < n; block *= D) {
for (std::size_t l = 0; l < n; l += D * block) {
for (std::size_t offset = l; offset < l + block; ++offset) {
const auto ref_getter = [&](std::size_t i) -> T& { return x[offset + i * block]; };
internal::unit_transform(unit_transform, ref_getter, std::make_index_sequence<D>());
}
}
}
}
template <typename T, typename UnitTransform>
void kronecker_power_transform(std::vector<T> &x, const std::size_t D, UnitTransform unit_transform) {
const std::size_t n = x.size();
std::vector<T> work(D);
for (std::size_t block = 1; block < n; block *= D) {
for (std::size_t l = 0; l < n; l += D * block) {
for (std::size_t offset = l; offset < l + block; ++offset) {
for (std::size_t i = 0; i < D; ++i) work[i] = x[offset + i * block];
unit_transform(work);
for (std::size_t i = 0; i < D; ++i) x[offset + i * block] = work[i];
}
}
}
}
template <typename T, auto e = default_operator::zero<T>, auto add = default_operator::add<T>, auto mul = default_operator::mul<T>>
auto kronecker_power_transform(std::vector<T> &x, const std::vector<std::vector<T>> &A) -> decltype(e(), add(std::declval<T>(), std::declval<T>()), mul(std::declval<T>(), std::declval<T>()), void()) {
const std::size_t D = A.size();
assert(D == A[0].size());
auto unit_transform = [&](std::vector<T> &x) {
std::vector<T> y(D, e());
for (std::size_t i = 0; i < D; ++i) for (std::size_t j = 0; j < D; ++j) {
y[i] = add(y[i], mul(A[i][j], x[j]));
}
x.swap(y);
};
kronecker_power_transform<T>(x, D, unit_transform);
}
}
} // namespace suisen
namespace suisen::subset_transform {
namespace internal {
template <typename T, auto add = default_operator::add<T>>
void zeta_unit_transform(T &x0, T &x1) {
// 1, 0
x1 = add(x1, x0); // 1, 1
}
template <typename T, auto sub = default_operator::sub<T>>
void mobius_unit_transform(T &x0, T &x1) {
// 1, 0
x1 = sub(x1, x0); // -1, 1
}
} // namespace internal
using kronecker_power_transform::kronecker_power_transform;
template <typename T, auto add = default_operator::add<T>>
void zeta(std::vector<T> &a) {
kronecker_power_transform<T, 2, internal::zeta_unit_transform<T, add>>(a);
}
template <typename T, auto sub = default_operator::sub<T>>
void mobius(std::vector<T> &a) {
kronecker_power_transform<T, 2, internal::mobius_unit_transform<T, sub>>(a);
}
} // namespace suisen::subset_transform
int main() {
input(int, n, m);
vector<long long> v(n);
read(v);
vector<long long> f(1 << m);
vector<int> s(n);
rep(i, n) {
input(string, t);
rep(j, m) s[i] |= (t[j] == 'o') << j;
f[s[i]] += v[i];
}
subset_transform::zeta(f);
const int mask = (1 << m) - 1;
vector<long long> dp(1 << m);
rep(s, 1 << m) {
int cs = ~s & mask;
rep(j, m) {
if (not kth_bit(s, j)) continue;
long long sum = f[cs | (1 << j)] - f[cs];
chmax(dp[s], dp[s ^ (1 << j)] + sum * sum);
}
}
print(dp.back());
return 0;
}