結果

問題 No.650 行列木クエリ
ユーザー SSRS
提出日時 2022-04-24 04:37:37
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 3,887 bytes
コンパイル時間 3,203 ms
コンパイル使用メモリ 250,596 KB
最終ジャッジ日時 2025-01-28 21:20:20
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 4 WA * 6
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#define _GLIBCXX_DEBUG
#include <bits/stdc++.h>
using namespace std;
const long long MOD = 10000000007;
array<array<long long, 2>, 2> matrix_multiplication(array<array<long long, 2>, 2> A, array<array<long long, 2>, 2> B){
array<array<long long, 2>, 2> C;
for (int i = 0; i < 2; i++){
for (int j = 0; j < 2; j++){
C[i][j] = (A[i][0] * B[0][j] + A[i][1] * B[1][j]) % MOD;
}
}
return C;
}
struct segment_tree{
int N;
vector<array<array<long long, 2>, 2>> ST;
segment_tree(){
}
segment_tree(int N2){
N = 1;
while (N < N2){
N *= 2;
}
ST = vector<array<array<long long, 2>, 2>>(N * 2 - 1, array<array<long long, 2>, 2>{array<long long, 2>{1, 0}, array<long long, 2>{0, 1}});
}
void update(int i, array<array<long long, 2>, 2> x){
i += N - 1;
ST[i] = x;
while (i > 0){
i = (i - 1) / 2;
ST[i] = matrix_multiplication(ST[i * 2 + 1], ST[i * 2 + 2]);
}
}
array<array<long long, 2>, 2> range_fold(int L, int R, int i, int l, int r){
if (r <= L || R <= l){
return array<array<long long, 2>, 2>{array<long long, 2>{1, 0}, array<long long, 2>{0, 1}};
} else if (L <= l && r <= R){
return ST[i];
} else {
int m = (l + r) / 2;
return matrix_multiplication(range_fold(L, R, i * 2 + 1, l, m), range_fold(L, R, i * 2 + 2, m, r));
}
}
array<array<long long, 2>, 2> range_fold(int L, int R){
return range_fold(L, R, 0, 0, N);
}
};
struct heavy_light_decomposition{
vector<int> p, in, sz, next;
segment_tree ST;
heavy_light_decomposition(vector<int> &p, vector<vector<int>> &c): p(p){
int N = p.size();
sz = vector<int>(N);
dfs1(c);
in = vector<int>(N);
next = vector<int>(N);
next[0] = 0;
int t = 0;
dfs2(c, t);
ST = segment_tree(N);
}
void dfs1(vector<vector<int>> &c, int v = 0){
sz[v] = 1;
for (int &w : c[v]){
dfs1(c, w);
sz[v] += sz[w];
if (sz[w] > sz[c[v][0]]){
swap(w, c[v][0]);
}
}
}
void dfs2(vector<vector<int>> &c, int &t, int v = 0){
in[v] = t;
t++;
for (int w : c[v]){
if (w == c[v][0]){
next[w] = next[v];
} else {
next[w] = w;
}
dfs2(c, t, w);
}
}
void update(int v, array<array<long long, 2>, 2> x){
ST.update(in[v], x);
}
array<array<long long, 2>, 2> query(int u, int v){
array<array<long long, 2>, 2> ans = {array<long long, 2>{1, 0}, array<long long, 2>{0, 1}};
while (next[v] != next[u]){
ans = matrix_multiplication(ST.range_fold(in[next[v]], in[v] + 1), ans);
v = p[next[v]];
}
ans = matrix_multiplication(ST.range_fold(in[u] + 1, in[v] + 1), ans);
return ans;
}
};
int main(){
int n;
cin >> n;
vector<int> a(n - 1), b(n - 1);
for (int i = 0; i < n - 1; i++){
cin >> a[i] >> b[i];
}
vector<vector<int>> E(n);
for (int i = 0; i < n - 1; i++){
E[a[i]].push_back(b[i]);
E[b[i]].push_back(a[i]);
}
vector<int> p(n, -1);
vector<vector<int>> c(n);
queue<int> Q;
Q.push(0);
while (!Q.empty()){
int v = Q.front();
Q.pop();
for (int w : E[v]){
if (w != p[v]){
p[w] = v;
c[v].push_back(w);
Q.push(w);
}
}
}
for (int i = 0; i < n - 1; i++){
if (b[i] == p[a[i]]){
swap(a[i], b[i]);
}
}
heavy_light_decomposition T(p, c);
int q;
cin >> q;
for (int k = 0; k < q; k++){
char t;
cin >> t;
if (t == 'x'){
int i;
long long x00, x01, x10, x11;
cin >> i >> x00 >> x01 >> x10 >> x11;
T.update(b[i], array<array<long long, 2>, 2>{array<long long, 2>{x00, x01}, array<long long, 2>{x10, x11}});
}
if (t == 'g'){
int i, j;
cin >> i >> j;
array<array<long long, 2>, 2> ans = T.query(i, j);
cout << ans[0][0] << ' ' << ans[0][1] << ' ' << ans[1][0] << ' ' << ans[1][1] << endl;
}
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0