結果
問題 | No.184 たのしい排他的論理和(HARD) |
ユーザー | KowerKoint2010 |
提出日時 | 2022-04-24 16:34:13 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 447 ms / 5,000 ms |
コード長 | 11,144 bytes |
コンパイル時間 | 2,535 ms |
コンパイル使用メモリ | 216,564 KB |
実行使用メモリ | 75,592 KB |
最終ジャッジ日時 | 2024-06-26 03:26:43 |
合計ジャッジ時間 | 12,331 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 3 ms
5,376 KB |
testcase_08 | AC | 311 ms
54,572 KB |
testcase_09 | AC | 63 ms
13,952 KB |
testcase_10 | AC | 232 ms
42,360 KB |
testcase_11 | AC | 165 ms
31,360 KB |
testcase_12 | AC | 366 ms
62,984 KB |
testcase_13 | AC | 389 ms
67,940 KB |
testcase_14 | AC | 217 ms
40,192 KB |
testcase_15 | AC | 422 ms
73,292 KB |
testcase_16 | AC | 348 ms
61,460 KB |
testcase_17 | AC | 382 ms
66,168 KB |
testcase_18 | AC | 3 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 100 ms
75,588 KB |
testcase_21 | AC | 439 ms
75,592 KB |
testcase_22 | AC | 447 ms
75,588 KB |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | AC | 2 ms
5,376 KB |
testcase_25 | AC | 2 ms
5,376 KB |
testcase_26 | AC | 2 ms
5,376 KB |
testcase_27 | AC | 2 ms
5,376 KB |
testcase_28 | AC | 256 ms
46,820 KB |
testcase_29 | AC | 369 ms
65,016 KB |
testcase_30 | AC | 318 ms
57,760 KB |
testcase_31 | AC | 270 ms
50,376 KB |
testcase_32 | AC | 338 ms
62,088 KB |
testcase_33 | AC | 426 ms
73,428 KB |
testcase_34 | AC | 418 ms
72,656 KB |
testcase_35 | AC | 436 ms
74,952 KB |
testcase_36 | AC | 436 ms
74,696 KB |
ソースコード
#line 2 "library/KowerKoint/base.hpp" #ifndef ONLINE_JUDGE #define _GLIBCXX_DEBUG #endif #include <bits/stdc++.h> using namespace std; #define REP(i, n) for(int i = 0; i < (int)(n); i++) #define FOR(i, a, b) for(ll i = a; i < (ll)(b); i++) #define ALL(a) (a).begin(),(a).end() #define END(...) { print(__VA_ARGS__); return; } using VI = vector<int>; using VVI = vector<VI>; using VVVI = vector<VVI>; using ll = long long; using VL = vector<ll>; using VVL = vector<VL>; using VVVL = vector<VVL>; using VD = vector<double>; using VVD = vector<VD>; using VVVD = vector<VVD>; using VS = vector<string>; using VVS = vector<VS>; using VVVS = vector<VVS>; using VC = vector<char>; using VVC = vector<VC>; using VVVC = vector<VVC>; using P = pair<int, int>; using VP = vector<P>; using VVP = vector<VP>; using VVVP = vector<VVP>; using LP = pair<ll, ll>; using VLP = vector<LP>; using VVLP = vector<VLP>; using VVVLP = vector<VVLP>; template <typename T> using PQ = priority_queue<T>; template <typename T> using GPQ = priority_queue<T, vector<T>, greater<T>>; constexpr int INF = 1001001001; constexpr ll LINF = 1001001001001001001ll; constexpr int DX[] = {1, 0, -1, 0}; constexpr int DY[] = {0, 1, 0, -1}; void print() { cout << '\n'; } template<typename T> void print(const T &t) { cout << t << '\n'; } template<typename Head, typename... Tail> void print(const Head &head, const Tail &... tail) { cout << head << ' '; print(tail...); } #ifdef ONLINE_JUDGE template<typename... Args> void dbg(const Args &... args) {} #else void dbg() { cerr << '\n'; } template<typename T> void dbg(const T &t) { cerr << t << '\n'; } template<typename Head, typename... Tail> void dbg(const Head &head, const Tail &... tail) { cerr << head << ' '; dbg(tail...); } #endif template< typename T1, typename T2 > ostream &operator<<(ostream &os, const pair< T1, T2 >& p) { os << p.first << " " << p.second; return os; } template< typename T1, typename T2 > istream &operator>>(istream &is, pair< T1, T2 > &p) { is >> p.first >> p.second; return is; } template< typename T > ostream &operator<<(ostream &os, const vector< T > &v) { for(int i = 0; i < (int) v.size(); i++) { os << v[i] << (i + 1 != (int) v.size() ? " " : ""); } return os; } template< typename T > istream &operator>>(istream &is, vector< T > &v) { for(T &in : v) is >> in; return is; } template<typename T> vector<vector<T>> split(typename vector<T>::const_iterator begin, typename vector<T>::const_iterator end, T val) { vector<vector<T>> res; vector<T> cur; for(auto it = begin; it != end; it++) { if(*it == val) { res.push_back(cur); cur.clear(); } else cur.push_back(val); } res.push_back(cur); return res; } vector<string> split(typename string::const_iterator begin, typename string::const_iterator end, char val) { vector<string> res; string cur = ""; for(auto it = begin; it != end; it++) { if(*it == val) { res.push_back(cur); cur.clear(); } else cur.push_back(val); } res.push_back(cur); return res; } template< typename T1, typename T2 > inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); } template< typename T1, typename T2 > inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); } template <typename T> pair<VI, vector<T>> compress(const vector<T> &a) { int n = a.size(); vector<T> x; REP(i, n) x.push_back(a[i]); sort(ALL(x)); x.erase(unique(ALL(x)), x.end()); VI res(n); REP(i, n) res[i] = lower_bound(ALL(x), a[i]) - x.begin(); return make_pair(res, x); } template <typename T> pair<vector<T>, vector<T>> factorial(int n) { vector<T> res(n+1), rev(n+1); res[0] = 1; REP(i, n) res[i+1] = res[i] * (i+1); rev[n] = 1 / res[n]; for(int i = n; i > 0; i--) { rev[i-1] = rev[i] * i; } return make_pair(res, rev); } #line 1 "library/KowerKoint/internal_operator.hpp" namespace internal_operator { template <typename T> T default_add(T a, T b) { return a + b; } template <typename T> T default_sub(T a, T b) { return a - b; } template <typename T> T zero() { return T(0); } template <typename T> T default_div(T a, T b) { return a / b; } template <typename T> T default_mult(T a, T b) { return a * b; } template <typename T> T one() { return T(1); } template <typename T> T default_xor(T a, T b) { return a ^ b; } template <typename T> T default_and(T a, T b) { return a & b; } template <typename T> T default_or(T a, T b) { return a | b; } } #line 4 "library/KowerKoint/matrix.hpp" template < typename T, T (*add)(const T, const T)=internal_operator::default_add, T (*zero)()=internal_operator::zero, T (*mult)(const T, const T)=internal_operator::default_mult, T (*one)()=internal_operator::one, T (*sub)(const T, const T)=internal_operator::default_sub, T (*div)(const T, const T)=internal_operator::default_div > struct Matrix { int n, m; vector<vector<T>> A; Matrix() : n(0), m(0), A(vector<vector<T>>(0)) {} Matrix(size_t _n, size_t _m) : n(_n), m(_m), A(_n, vector<T>(_m, zero())) {} Matrix(vector<vector<T>> _A) : n(_A.size()), m(_A[0].size()), A(_A) {} vector<T> &operator[](int i) { return A.at(i); } const vector<T> &operator[](int i) const { return A.at(i); } static Matrix I(size_t n) { Matrix ret(n, n); REP(i, n) ret[i][i] = one(); return ret; } Matrix &operator+=(const Matrix &B) { assert(n == B.n && m == B.m); REP(i, n) REP(j, m) A[i][j] = add(A[i][j], B[i][j]); return *this; } Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); } Matrix &operator-=(const Matrix &B) { assert(n == B.n && m == B.m); REP(i, n) REP(j, m) A[i][j] = sub(A[i][j], B[i][j]); return *this; } Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); } Matrix &operator*=(const Matrix &B) { assert(m == B.n); vector<vector<T>> res(n, vector<T>(B.m, zero())); REP(i, n) REP(j, m) REP(k, B.m) res[i][k] = add(res[i][k], mult(A[i][j], B[j][k])); A.swap(res); m = B.m; return (*this); } Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); } Matrix &operator|=(const Matrix &B) { assert(B.n == n); REP(i, n) { A[i].resize(m+B.m); REP(j, B.m) A[i][m+j] = B[i][j]; } m += B.m; return (*this); } Matrix operator|(const Matrix &B) const { return (Matrix(*this) |= B); } Matrix &operator|=(const vector<T> &B) { assert(B.size() == n); REP(i, n) { A[i].push_back(B[i]); } m++; return (*this); } Matrix operator|(const vector<T> &B) const { return (Matrix(*this) |= B); } Matrix &operator&=(const Matrix &B) { assert(B.m == m); A.resize(n+B.n); REP(i, B.n) { A[n+i] = B[i]; } n += B.n; return (*this); } Matrix operator&(const Matrix &B) const { return (Matrix(*this) &= B); } Matrix &operator&=(const vector<T> &B) { assert(B.size() == m); A.push_back(B); n++; return (*this); } Matrix operator&(const vector<T> &B) const { return (Matrix(*this) &= B); } friend istream &operator>>(istream &is, Matrix &mat) { REP(i, mat.n) REP(j, mat.m) is >> mat[i][j]; return is; } friend ostream &operator<<(ostream &os, const Matrix &mat) { REP(i, mat.n) { REP(j, mat.m) os << mat[i][j] << (j==mat.m-1? '\n' : ' '); } return os; } pair<Matrix, T> gaussian_elimination() const { Matrix mat(*this); T det = one(); VI columns; int i = 0; int j = 0; while(i < n && j < m) { int idx = -1; FOR(k, i, n) if(mat[k][j] != zero()) idx = k; if(idx == -1) { det = zero(); j++; continue; } if(i != idx) { det *= sub(zero(), one()); swap(mat[i], mat[idx]); } det *= mat[i][j]; T scale = mat[i][j]; REP(l, m) mat[i][l] = div(mat[i][l], scale); FOR(k, i+1, n) { T scale = mat[k][j]; REP(l, m) mat[k][l] = sub(mat[k][l], mult(mat[i][l], scale)); } columns.push_back(j); i++; j++; } REP(i, columns.size()) { int j = columns[i]; REP(k, i) { T scale = mat[k][j]; FOR(l, j, m) { mat[k][l] = sub(mat[k][l], mult(mat[i][l], scale)); } } } return make_pair(mat, det); } void make_basis() { *this = gaussian_elimination().first; while(n && get_bra(n-1) == vector<T>(m, zero())) pop_bra(); } Matrix inv() const { Matrix and_i = A | I(n); auto [i_and, det] = and_i.gaussian_elimination(); assert(det != zero()); Matrix res(n, n); REP(i, n) REP(j, n) res[i][j] = i_and[i][n+i]; return res; } vector<T> get_bra(int i) const { assert(0 <= i && i < n); return A[i]; } vector<T> get_ket(int i) const { assert(0 <= i && i < m); vector<T> res(n); REP(i, n) res[i] = A[i][i]; return res; } void pop_bra() { assert(n > 0); A.pop_back(); n--; } void pop_ket() { assert(m > 0); REP(i, n) A[i].pop_back(); m--; } Matrix transpose() const { Matrix res(m, n); REP(i, n) REP(j, m) res[j][i] = A[i][j]; return res; } Matrix operator^=(ll n) { if(n < 0) { *this = this->inv(); n = -n; } Matrix res = Matrix::I(n); while(n) { if(n & 1) res *= *this; *this *= *this; n >>= 1LL; } A.swap(res.A); return (*this); } Matrix operator^(const ll n) const { return (Matrix(*this) ^= n); } }; using XorMatrix = Matrix< int, internal_operator::default_xor<int>, internal_operator::zero<int>, internal_operator::default_and<int>, internal_operator::one<int>, internal_operator::default_xor<int>, internal_operator::default_and<int> >; #line 2 "library/KowerKoint/test/yukicoder-184/main.cpp" int main(void) { int n; cin >> n; VL a(n); cin >> a; XorMatrix mat(61, n); REP(i, 61) REP(j, n) mat[i][j] = a[j] >> i & 1LL; auto basis = mat.gaussian_elimination().first; ll ans = 1; REP(i, 61) { REP(j, n) if(basis[i][j]) { ans <<= 1LL; break; } } print(ans); }