結果
問題 | No.1916 Making Palindrome on Gird |
ユーザー |
![]() |
提出日時 | 2022-04-29 21:55:04 |
言語 | C++17(clang) (17.0.6 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,973 ms / 3,000 ms |
コード長 | 5,884 bytes |
コンパイル時間 | 1,854 ms |
コンパイル使用メモリ | 149,924 KB |
実行使用メモリ | 194,160 KB |
最終ジャッジ日時 | 2024-12-26 23:27:39 |
合計ジャッジ時間 | 15,594 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 30 |
ソースコード
#include <algorithm>#include <bitset>#include <cassert>#include <iomanip>#include <iostream>#include <map>#include <queue>#include <random>#include <set>#include <stack>#include <vector>#define FOR(i, n, m) for (ll i = n; i < (int)m; i++)#define REP(i, n) FOR(i, 0, n)#define ALL(v) v.begin(), v.end()#define pb push_backusing namespace std;using ll = long long;using P = pair<int, int>;constexpr ll inf = 1000000000;constexpr ll mod = 1000000007;constexpr long double eps = 1e-9;template <typename T1, typename T2>ostream& operator<<(ostream& os, pair<T1, T2> p) {os << to_string(p.first) << " " << to_string(p.second);return os;}template <typename T>ostream& operator<<(ostream& os, vector<T>& v) {REP(i, v.size()) {if (i) os << " ";os << to_string(v[i]);}return os;}struct modint {ll n;public:modint(const ll n = 0) : n((n % mod + mod) % mod) {}static modint pow(modint a, int m) {modint r = 1;while (m > 0) {if (m & 1) {r *= a;}a = (a * a);m /= 2;}return r;}modint& operator++() {*this += 1;return *this;}modint& operator--() {*this -= 1;return *this;}modint operator++(int) {modint ret = *this;*this += 1;return ret;}modint operator--(int) {modint ret = *this;*this -= 1;return ret;}modint operator~() const { return (this->pow(n, mod - 2)); } // inversefriend bool operator==(const modint& lhs, const modint& rhs) {return lhs.n == rhs.n;}friend bool operator<(const modint& lhs, const modint& rhs) {return lhs.n < rhs.n;}friend bool operator>(const modint& lhs, const modint& rhs) {return lhs.n > rhs.n;}friend modint& operator+=(modint& lhs, const modint& rhs) {lhs.n += rhs.n;if (lhs.n >= mod) lhs.n -= mod;return lhs;}friend modint& operator-=(modint& lhs, const modint& rhs) {lhs.n -= rhs.n;if (lhs.n < 0) lhs.n += mod;return lhs;}friend modint& operator*=(modint& lhs, const modint& rhs) {lhs.n = (lhs.n * rhs.n) % mod;return lhs;}friend modint& operator/=(modint& lhs, const modint& rhs) {lhs.n = (lhs.n * (~rhs).n) % mod;return lhs;}friend modint operator+(const modint& lhs, const modint& rhs) {return modint(lhs.n + rhs.n);}friend modint operator-(const modint& lhs, const modint& rhs) {return modint(lhs.n - rhs.n);}friend modint operator*(const modint& lhs, const modint& rhs) {return modint(lhs.n * rhs.n);}friend modint operator/(const modint& lhs, const modint& rhs) {return modint(lhs.n * (~rhs).n);}};istream& operator>>(istream& is, modint m) {is >> m.n;return is;}ostream& operator<<(ostream& os, modint m) {os << m.n;return os;}#define MAX_N 3030303long long extgcd(long long a, long long b, long long& x, long long& y) {long long d = a;if (b != 0) {d = extgcd(b, a % b, y, x);y -= (a / b) * x;} else {x = 1;y = 0;}return d;}long long mod_inverse(long long a, long long m) {long long x, y;if (extgcd(a, m, x, y) == 1)return (m + x % m) % m;elsereturn -1;}vector<long long> fact(MAX_N + 1, inf);long long mod_fact(long long n, long long& e) {if (fact[0] == inf) {fact[0] = 1;if (MAX_N != 0) fact[1] = 1;for (ll i = 2; i <= MAX_N; ++i) {fact[i] = (fact[i - 1] * i) % mod;}}e = 0;if (n == 0) return 1;long long res = mod_fact(n / mod, e);e += n / mod;if ((n / mod) % 2 != 0) return (res * (mod - fact[n % mod])) % mod;return (res * fact[n % mod]) % mod;}// return nCklong long mod_comb(long long n, long long k) {if (n < 0 || k < 0 || n < k) return 0;long long e1, e2, e3;long long a1 = mod_fact(n, e1), a2 = mod_fact(k, e2),a3 = mod_fact(n - k, e3);if (e1 > e2 + e3) return 0;return (a1 * mod_inverse((a2 * a3) % mod, mod)) % mod;}using mi = modint;mi mod_pow(mi a, ll n) {mi ret = 1;mi tmp = a;while (n > 0) {if (n % 2) ret *= tmp;tmp = tmp * tmp;n /= 2;}return ret;}ll gcd(ll a, ll b) {if (b == 0) return a;return gcd(b, a % b);}int h, w;string s[200];map<P, mi> memo[200][200];mi solve(P p1, P p2) {// invalidif (p1.first >= h || p1.second >= w || p2.first >= h || p2.second >= w)return 0;if (s[p1.first][p1.second] != s[p2.first][p2.second]) return 0;if (p1.first + p1.second > p2.first + p2.second) return 0;// memoizedif (memo[p1.first][p1.second].count(p2))return memo[p1.first][p1.second][p2];if (p1.first + p1.second == p2.first + p2.second) {if (p1 == p2)return 1;elsereturn 0;}if (p1.first + p1.second + 1 == p2.first + p2.second) {if (abs(p1.first - p2.first) + abs(p1.second - p2.second) == 1) {return 1;} elsereturn 0;}return memo[p1.first][p1.second][p2] =solve({p1.first + 1, p1.second}, {p2.first - 1, p2.second}) +solve({p1.first + 1, p1.second}, {p2.first, p2.second - 1}) +solve({p1.first, p1.second + 1}, {p2.first - 1, p2.second}) +solve({p1.first, p1.second + 1}, {p2.first, p2.second - 1});}int main() {ios::sync_with_stdio(false);cin.tie(0);cin >> h >> w;REP(i, h) cin >> s[i];cout << solve({0, 0}, {h - 1, w - 1}) << endl;return 0;}