結果

問題 No.1916 Making Palindrome on Gird
ユーザー gazellegazelle
提出日時 2022-04-29 21:55:04
言語 C++17(clang)
(17.0.6 + boost 1.87.0)
結果
AC  
実行時間 1,973 ms / 3,000 ms
コード長 5,884 bytes
コンパイル時間 1,854 ms
コンパイル使用メモリ 149,924 KB
実行使用メモリ 194,160 KB
最終ジャッジ日時 2024-12-26 23:27:39
合計ジャッジ時間 15,594 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 30
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <algorithm>
#include <bitset>
#include <cassert>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <vector>
#define FOR(i, n, m) for (ll i = n; i < (int)m; i++)
#define REP(i, n) FOR(i, 0, n)
#define ALL(v) v.begin(), v.end()
#define pb push_back
using namespace std;
using ll = long long;
using P = pair<int, int>;
constexpr ll inf = 1000000000;
constexpr ll mod = 1000000007;
constexpr long double eps = 1e-9;
template <typename T1, typename T2>
ostream& operator<<(ostream& os, pair<T1, T2> p) {
os << to_string(p.first) << " " << to_string(p.second);
return os;
}
template <typename T>
ostream& operator<<(ostream& os, vector<T>& v) {
REP(i, v.size()) {
if (i) os << " ";
os << to_string(v[i]);
}
return os;
}
struct modint {
ll n;
public:
modint(const ll n = 0) : n((n % mod + mod) % mod) {}
static modint pow(modint a, int m) {
modint r = 1;
while (m > 0) {
if (m & 1) {
r *= a;
}
a = (a * a);
m /= 2;
}
return r;
}
modint& operator++() {
*this += 1;
return *this;
}
modint& operator--() {
*this -= 1;
return *this;
}
modint operator++(int) {
modint ret = *this;
*this += 1;
return ret;
}
modint operator--(int) {
modint ret = *this;
*this -= 1;
return ret;
}
modint operator~() const { return (this->pow(n, mod - 2)); } // inverse
friend bool operator==(const modint& lhs, const modint& rhs) {
return lhs.n == rhs.n;
}
friend bool operator<(const modint& lhs, const modint& rhs) {
return lhs.n < rhs.n;
}
friend bool operator>(const modint& lhs, const modint& rhs) {
return lhs.n > rhs.n;
}
friend modint& operator+=(modint& lhs, const modint& rhs) {
lhs.n += rhs.n;
if (lhs.n >= mod) lhs.n -= mod;
return lhs;
}
friend modint& operator-=(modint& lhs, const modint& rhs) {
lhs.n -= rhs.n;
if (lhs.n < 0) lhs.n += mod;
return lhs;
}
friend modint& operator*=(modint& lhs, const modint& rhs) {
lhs.n = (lhs.n * rhs.n) % mod;
return lhs;
}
friend modint& operator/=(modint& lhs, const modint& rhs) {
lhs.n = (lhs.n * (~rhs).n) % mod;
return lhs;
}
friend modint operator+(const modint& lhs, const modint& rhs) {
return modint(lhs.n + rhs.n);
}
friend modint operator-(const modint& lhs, const modint& rhs) {
return modint(lhs.n - rhs.n);
}
friend modint operator*(const modint& lhs, const modint& rhs) {
return modint(lhs.n * rhs.n);
}
friend modint operator/(const modint& lhs, const modint& rhs) {
return modint(lhs.n * (~rhs).n);
}
};
istream& operator>>(istream& is, modint m) {
is >> m.n;
return is;
}
ostream& operator<<(ostream& os, modint m) {
os << m.n;
return os;
}
#define MAX_N 3030303
long long extgcd(long long a, long long b, long long& x, long long& y) {
long long d = a;
if (b != 0) {
d = extgcd(b, a % b, y, x);
y -= (a / b) * x;
} else {
x = 1;
y = 0;
}
return d;
}
long long mod_inverse(long long a, long long m) {
long long x, y;
if (extgcd(a, m, x, y) == 1)
return (m + x % m) % m;
else
return -1;
}
vector<long long> fact(MAX_N + 1, inf);
long long mod_fact(long long n, long long& e) {
if (fact[0] == inf) {
fact[0] = 1;
if (MAX_N != 0) fact[1] = 1;
for (ll i = 2; i <= MAX_N; ++i) {
fact[i] = (fact[i - 1] * i) % mod;
}
}
e = 0;
if (n == 0) return 1;
long long res = mod_fact(n / mod, e);
e += n / mod;
if ((n / mod) % 2 != 0) return (res * (mod - fact[n % mod])) % mod;
return (res * fact[n % mod]) % mod;
}
// return nCk
long long mod_comb(long long n, long long k) {
if (n < 0 || k < 0 || n < k) return 0;
long long e1, e2, e3;
long long a1 = mod_fact(n, e1), a2 = mod_fact(k, e2),
a3 = mod_fact(n - k, e3);
if (e1 > e2 + e3) return 0;
return (a1 * mod_inverse((a2 * a3) % mod, mod)) % mod;
}
using mi = modint;
mi mod_pow(mi a, ll n) {
mi ret = 1;
mi tmp = a;
while (n > 0) {
if (n % 2) ret *= tmp;
tmp = tmp * tmp;
n /= 2;
}
return ret;
}
ll gcd(ll a, ll b) {
if (b == 0) return a;
return gcd(b, a % b);
}
int h, w;
string s[200];
map<P, mi> memo[200][200];
mi solve(P p1, P p2) {
// invalid
if (p1.first >= h || p1.second >= w || p2.first >= h || p2.second >= w)
return 0;
if (s[p1.first][p1.second] != s[p2.first][p2.second]) return 0;
if (p1.first + p1.second > p2.first + p2.second) return 0;
// memoized
if (memo[p1.first][p1.second].count(p2))
return memo[p1.first][p1.second][p2];
if (p1.first + p1.second == p2.first + p2.second) {
if (p1 == p2)
return 1;
else
return 0;
}
if (p1.first + p1.second + 1 == p2.first + p2.second) {
if (abs(p1.first - p2.first) + abs(p1.second - p2.second) == 1) {
return 1;
} else
return 0;
}
return memo[p1.first][p1.second][p2] =
solve({p1.first + 1, p1.second}, {p2.first - 1, p2.second}) +
solve({p1.first + 1, p1.second}, {p2.first, p2.second - 1}) +
solve({p1.first, p1.second + 1}, {p2.first - 1, p2.second}) +
solve({p1.first, p1.second + 1}, {p2.first, p2.second - 1});
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cin >> h >> w;
REP(i, h) cin >> s[i];
cout << solve({0, 0}, {h - 1, w - 1}) << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0