結果

問題 No.344 ある無理数の累乗
ユーザー antaanta
提出日時 2016-02-12 23:06:42
言語 C++11
(gcc 11.4.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 3,318 bytes
コンパイル時間 752 ms
コンパイル使用メモリ 86,472 KB
実行使用メモリ 6,948 KB
最終ジャッジ日時 2024-09-22 04:51:34
合計ジャッジ時間 1,713 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,812 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 1 ms
6,944 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 2 ms
6,944 KB
testcase_05 AC 2 ms
6,940 KB
testcase_06 AC 1 ms
6,944 KB
testcase_07 AC 2 ms
6,944 KB
testcase_08 AC 2 ms
6,944 KB
testcase_09 AC 2 ms
6,944 KB
testcase_10 AC 2 ms
6,944 KB
testcase_11 AC 2 ms
6,940 KB
testcase_12 AC 1 ms
6,940 KB
testcase_13 AC 2 ms
6,940 KB
testcase_14 AC 2 ms
6,944 KB
testcase_15 AC 1 ms
6,944 KB
testcase_16 AC 1 ms
6,940 KB
testcase_17 AC 2 ms
6,944 KB
testcase_18 AC 2 ms
6,940 KB
testcase_19 AC 2 ms
6,944 KB
testcase_20 AC 1 ms
6,940 KB
testcase_21 AC 1 ms
6,940 KB
testcase_22 AC 2 ms
6,940 KB
testcase_23 AC 2 ms
6,940 KB
testcase_24 AC 1 ms
6,940 KB
testcase_25 AC 1 ms
6,944 KB
testcase_26 AC 2 ms
6,944 KB
testcase_27 AC 1 ms
6,940 KB
testcase_28 AC 2 ms
6,940 KB
testcase_29 AC 2 ms
6,948 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <string>
#include <vector>
#include <algorithm>
#include <numeric>
#include <set>
#include <map>
#include <queue>
#include <iostream>
#include <sstream>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <cstring>
#include <cctype>
#include <cassert>
#include <limits>
#include <functional>
#define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i))
#define rer(i,l,u) for(int (i)=(int)(l);(i)<=(int)(u);++(i))
#define reu(i,l,u) for(int (i)=(int)(l);(i)<(int)(u);++(i))
#if defined(_MSC_VER) || __cplusplus > 199711L
#define aut(r,v) auto r = (v)
#else
#define aut(r,v) __typeof(v) r = (v)
#endif
#define each(it,o) for(aut(it, (o).begin()); it != (o).end(); ++ it)
#define all(o) (o).begin(), (o).end()
#define pb(x) push_back(x)
#define mp(x,y) make_pair((x),(y))
#define mset(m,v) memset(m,v,sizeof(m))
#define INF 0x3f3f3f3f
#define INFL 0x3f3f3f3f3f3f3f3fLL
using namespace std;
typedef vector<int> vi; typedef pair<int, int> pii; typedef vector<pair<int, int> > vpii; typedef long long ll;
template<typename T, typename U> inline void amin(T &x, U y) { if(y < x) x = y; }
template<typename T, typename U> inline void amax(T &x, U y) { if(x < y) x = y; }


template<int MOD>
struct ModInt {
	static const int Mod = MOD;
	unsigned x;
	ModInt() : x(0) {}
	ModInt(signed sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; }
	ModInt(signed long long sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; }
	int get() const { return (int)x; }

	ModInt &operator+=(ModInt that) { if((x += that.x) >= MOD) x -= MOD; return *this; }
	ModInt &operator-=(ModInt that) { if((x += MOD - that.x) >= MOD) x -= MOD; return *this; }
	ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; }

	ModInt operator+(ModInt that) const { return ModInt(*this) += that; }
	ModInt operator-(ModInt that) const { return ModInt(*this) -= that; }
	ModInt operator*(ModInt that) const { return ModInt(*this) *= that; }
};
typedef ModInt<1000> mint;

mint linearlyRecurrentSequenceValue(long long K, const vector<mint> &initValues, const vector<mint> &annPoly) {
	assert(K >= 0);
	if(K < (int)initValues.size())
		return initValues[(int)K];
	int d = (int)annPoly.size() - 1;
	assert(d >= 0);
	assert(annPoly[d].get() == 1);
	assert(d <= (int)initValues.size());
	if(d == 0)
		return mint();
	vector<mint> coeffs(d), square;
	coeffs[0] = 1;
	int l = 0;
	while((K >> l) > 1) ++ l;
	for(; l >= 0; -- l) {
		square.assign(d * 2 - 1, mint());
		for(int i = 0; i < d; ++ i)
			for(int j = 0; j < d; ++ j)
				square[i + j] += coeffs[i] * coeffs[j];
		for(int i = d * 2 - 2; i >= d; -- i) {
			mint c = square[i];
			if(c.x == 0) continue;
			for(int j = 0; j < d; ++ j)
				square[i - d + j] -= c * annPoly[j];
		}
		for(int i = 0; i < d; ++ i)
			coeffs[i] = square[i];
		if(K >> l & 1) {
			mint lc = coeffs[d - 1];
			for(int i = d - 1; i >= 1; -- i)
				coeffs[i] = coeffs[i - 1] - lc * annPoly[i];
			coeffs[0] = mint() - lc * annPoly[0];
		}
	}
	mint res;
	for(int i = 0; i < d; ++ i)
		res += coeffs[i] * initValues[i];
	return res;
}

int main() {
	vector<mint> init = { 1, 2, 7, 20, 55 };
	vector<mint> phi = { 2, 2, -3, -2, 1 };
	int n;
	while(~scanf("%d", &n)) {
		mint ans = linearlyRecurrentSequenceValue(n, init, phi);
		printf("%d\n", ans.get());
	}
	return 0;
}
0