結果
問題 | No.344 ある無理数の累乗 |
ユーザー | anta |
提出日時 | 2016-02-12 23:06:42 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 3,318 bytes |
コンパイル時間 | 752 ms |
コンパイル使用メモリ | 86,472 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-09-22 04:51:34 |
合計ジャッジ時間 | 1,713 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 1 ms
6,944 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 1 ms
6,944 KB |
testcase_07 | AC | 2 ms
6,944 KB |
testcase_08 | AC | 2 ms
6,944 KB |
testcase_09 | AC | 2 ms
6,944 KB |
testcase_10 | AC | 2 ms
6,944 KB |
testcase_11 | AC | 2 ms
6,940 KB |
testcase_12 | AC | 1 ms
6,940 KB |
testcase_13 | AC | 2 ms
6,940 KB |
testcase_14 | AC | 2 ms
6,944 KB |
testcase_15 | AC | 1 ms
6,944 KB |
testcase_16 | AC | 1 ms
6,940 KB |
testcase_17 | AC | 2 ms
6,944 KB |
testcase_18 | AC | 2 ms
6,940 KB |
testcase_19 | AC | 2 ms
6,944 KB |
testcase_20 | AC | 1 ms
6,940 KB |
testcase_21 | AC | 1 ms
6,940 KB |
testcase_22 | AC | 2 ms
6,940 KB |
testcase_23 | AC | 2 ms
6,940 KB |
testcase_24 | AC | 1 ms
6,940 KB |
testcase_25 | AC | 1 ms
6,944 KB |
testcase_26 | AC | 2 ms
6,944 KB |
testcase_27 | AC | 1 ms
6,940 KB |
testcase_28 | AC | 2 ms
6,940 KB |
testcase_29 | AC | 2 ms
6,948 KB |
ソースコード
#include <string> #include <vector> #include <algorithm> #include <numeric> #include <set> #include <map> #include <queue> #include <iostream> #include <sstream> #include <cstdio> #include <cmath> #include <ctime> #include <cstring> #include <cctype> #include <cassert> #include <limits> #include <functional> #define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i)) #define rer(i,l,u) for(int (i)=(int)(l);(i)<=(int)(u);++(i)) #define reu(i,l,u) for(int (i)=(int)(l);(i)<(int)(u);++(i)) #if defined(_MSC_VER) || __cplusplus > 199711L #define aut(r,v) auto r = (v) #else #define aut(r,v) __typeof(v) r = (v) #endif #define each(it,o) for(aut(it, (o).begin()); it != (o).end(); ++ it) #define all(o) (o).begin(), (o).end() #define pb(x) push_back(x) #define mp(x,y) make_pair((x),(y)) #define mset(m,v) memset(m,v,sizeof(m)) #define INF 0x3f3f3f3f #define INFL 0x3f3f3f3f3f3f3f3fLL using namespace std; typedef vector<int> vi; typedef pair<int, int> pii; typedef vector<pair<int, int> > vpii; typedef long long ll; template<typename T, typename U> inline void amin(T &x, U y) { if(y < x) x = y; } template<typename T, typename U> inline void amax(T &x, U y) { if(x < y) x = y; } template<int MOD> struct ModInt { static const int Mod = MOD; unsigned x; ModInt() : x(0) {} ModInt(signed sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; } ModInt(signed long long sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; } int get() const { return (int)x; } ModInt &operator+=(ModInt that) { if((x += that.x) >= MOD) x -= MOD; return *this; } ModInt &operator-=(ModInt that) { if((x += MOD - that.x) >= MOD) x -= MOD; return *this; } ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; } ModInt operator+(ModInt that) const { return ModInt(*this) += that; } ModInt operator-(ModInt that) const { return ModInt(*this) -= that; } ModInt operator*(ModInt that) const { return ModInt(*this) *= that; } }; typedef ModInt<1000> mint; mint linearlyRecurrentSequenceValue(long long K, const vector<mint> &initValues, const vector<mint> &annPoly) { assert(K >= 0); if(K < (int)initValues.size()) return initValues[(int)K]; int d = (int)annPoly.size() - 1; assert(d >= 0); assert(annPoly[d].get() == 1); assert(d <= (int)initValues.size()); if(d == 0) return mint(); vector<mint> coeffs(d), square; coeffs[0] = 1; int l = 0; while((K >> l) > 1) ++ l; for(; l >= 0; -- l) { square.assign(d * 2 - 1, mint()); for(int i = 0; i < d; ++ i) for(int j = 0; j < d; ++ j) square[i + j] += coeffs[i] * coeffs[j]; for(int i = d * 2 - 2; i >= d; -- i) { mint c = square[i]; if(c.x == 0) continue; for(int j = 0; j < d; ++ j) square[i - d + j] -= c * annPoly[j]; } for(int i = 0; i < d; ++ i) coeffs[i] = square[i]; if(K >> l & 1) { mint lc = coeffs[d - 1]; for(int i = d - 1; i >= 1; -- i) coeffs[i] = coeffs[i - 1] - lc * annPoly[i]; coeffs[0] = mint() - lc * annPoly[0]; } } mint res; for(int i = 0; i < d; ++ i) res += coeffs[i] * initValues[i]; return res; } int main() { vector<mint> init = { 1, 2, 7, 20, 55 }; vector<mint> phi = { 2, 2, -3, -2, 1 }; int n; while(~scanf("%d", &n)) { mint ans = linearlyRecurrentSequenceValue(n, init, phi); printf("%d\n", ans.get()); } return 0; }