結果

問題 No.1919 Many Monster Battles
ユーザー ei1333333
提出日時 2022-04-29 22:29:40
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 5,688 bytes
コンパイル時間 5,480 ms
コンパイル使用メモリ 285,856 KB
最終ジャッジ日時 2025-01-28 23:14:56
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 22 TLE * 10
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
#include<atcoder/all>

using namespace std;

using mint = atcoder::modint1000000007;
const int inf = (1 << 30) - 1;

#line 1 "structure/others/abstract-binary-indexed-tree.cpp"

/**
 * @brief Abstract Binary Indexed Tree(抽象化BIT)
 * @docs docs/abstract-binary-indexed-tree.md
 */
template< typename T, typename F >
struct AbstractBinaryIndexedTree {
private:
  int n;
  vector< T > data;
  const F f;
  const T e;

public:
  AbstractBinaryIndexedTree() = default;

  explicit AbstractBinaryIndexedTree(int n, const F f, const T &e) : n(n), f(f), e(e) {
    data.assign(n + 1, e);
  }

  explicit AbstractBinaryIndexedTree(const vector< T > &v, const F f, const T &e) :
      AbstractBinaryIndexedTree((int) v.size(), f, e) {
    build(v);
  }

  void build(const vector< T > &v) {
    assert(n == (int) v.size());
    for(int i = 1; i <= n; i++) data[i] = v[i - 1];
    for(int i = 1; i <= n; i++) {
      int j = i + (i & -i);
      if(j <= n) data[j] = f(data[j], data[i]);
    }
  }

  void apply(int k, const T &x) {
    for(++k; k <= n; k += k & -k) data[k] = f(data[k], x);
  }

  T prod(int r) const {
    T ret{e};
    for(; r > 0; r -= r & -r) ret = f(ret, data[r]);
    return ret;
  }
};

template< typename T, typename F >
AbstractBinaryIndexedTree< T, F > get_abstract_binary_indexed_tree(int n, const F &f, const T &e) {
  return AbstractBinaryIndexedTree{n, f, e};
}

template< typename T, typename F >
AbstractBinaryIndexedTree< T, F > get_abstract_binary_indexed_tree(const vector< T > &v, const F &f, const T &e) {
  return AbstractBinaryIndexedTree{v, f, e};
}

#line 2 "structure/others/abstract-2d-binary-indexed-tree-compressed.cpp"

/**
 * @brief Abstract 2D Binary Indexed Tree Compressed(抽象化2次元座圧BIT)
 */
template< typename T, typename F >
struct Abstract2DBinaryIndexedTreeCompressed {
private:
  int n;
  vector< AbstractBinaryIndexedTree< T, F > > data;
  const F f;
  const T e;
  vector< int > hs;
  vector< vector< int > > beet;
public:
  Abstract2DBinaryIndexedTreeCompressed(const vector< int > &hs, const F f, const T &e) :
      n((int) hs.size()), hs(hs), f(f), e(e) {
    vector< int > ord(n);
    iota(begin(ord), end(ord), 0);
    sort(begin(ord), end(ord), [&](int a, int b) {
      return hs[a] < hs[b];
    });
    beet.resize(n + 1);
    for(auto &&i: ord) {
      for(int k = i + 1; k <= n; k += k & -k) {
        beet[k].emplace_back(hs[i]);
      }
    }
    data.reserve(n + 1);
    for(int k = 0; k <= n; k++) {
      beet[k].erase(unique(begin(beet[k]), end(beet[k])), end(beet[k]));
      data.emplace_back((int) beet[k].size(), f, e);
    }
  }

  void apply(int k1, const T &x) {
    int k2 = hs[k1];
    for(++k1; k1 <= n; k1 += k1 & -k1) {
      int p = lower_bound(begin(beet[k1]), end(beet[k1]), k2) - begin(beet[k1]);
      data[k1].apply(p, x);
    }
  }

  T prod(int r1, int r2) const {
    T ret{e};
    for(; r1 > 0; r1 -= r1 & -r1) {
      int p = lower_bound(begin(beet[r1]), end(beet[r1]), r2) - begin(beet[r1]);
      ret = f(ret, data[r1].prod(p));
    }
    return ret;
  }
};

template< typename T, typename F >
Abstract2DBinaryIndexedTreeCompressed< T, F > get_abstract_2d_binary_indexed_tree_compressed(const vector< int > &hs, const F &f, const T &e) {
  return Abstract2DBinaryIndexedTreeCompressed{hs, f, e};
}

mint solve(const vector< int > &A, const vector< int > &B) {
  int N = (int) A.size();
  mint ret = 0;
  {
    vector< int > ord(N);
    iota(begin(ord), end(ord), 0);
    sort(begin(ord), end(ord), [&](int a, int b) {
      return A[a] < A[b];
    });
    vector< pair< int, int > > pts(N);
    for(int i = 0; i < N; i++) pts[i] = {A[i] - B[i], A[i] + B[i]};
    sort(begin(pts), end(pts));
    pts.erase(unique(begin(pts), end(pts)), end(pts));
    vector< int > xs(pts.size()), ys(pts.size()), ds(pts.size());
    for(int i = 0; i < (int) pts.size(); i++) {
      tie(xs[i], ys[i]) = pts[i];
    }
    auto bs = get_abstract_2d_binary_indexed_tree_compressed(ys, [](int a, int b) { return a + b; }, 0);
    for(int i: ord) {
      {
        int left = lower_bound(begin(xs), end(xs), A[i] - B[i]) - begin(xs);
        int right = (int) pts.size();
        int pct = bs.prod(left, A[i] + B[i]);
        ret += mint(A[i]) * pct;
      }
      {
        int idx = lower_bound(begin(pts), end(pts), make_pair(A[i] - B[i], A[i] + B[i])) - begin(pts);
        bs.apply(idx, 1);
      }
    }
  }

  {
    vector< int > ord(N);
    iota(begin(ord), end(ord), 0);
    sort(begin(ord), end(ord), [&](int a, int b) {
      return A[a] > A[b];
    });
    vector< pair< int, int > > pts(N);
    for(int i = 0; i < N; i++) pts[i] = {-(A[i] + B[i]), -(A[i] - B[i])};
    sort(begin(pts), end(pts));
    pts.erase(unique(begin(pts), end(pts)), end(pts));
    vector< int > xs(pts.size()), ys(pts.size()), ds(pts.size());
    for(int i = 0; i < (int) pts.size(); i++) {
      tie(xs[i], ys[i]) = pts[i];
    }
    auto bs = get_abstract_2d_binary_indexed_tree_compressed(ys, [](int a, int b) { return a + b; }, 0);
    for(int i: ord) {
      {
        int left = lower_bound(begin(xs), end(xs), -(A[i] + B[i])) - begin(xs);
        int right = (int) pts.size();
        int pct = bs.prod(left, -(A[i] - B[i]));
        ret -= mint(A[i]) * pct;
      }
      {
        int idx = lower_bound(begin(pts), end(pts), make_pair(-(A[i] + B[i]), -(A[i] - B[i]))) - begin(pts);
        bs.apply(idx, 1);
      }
    }
  }
  return ret * 2;
}

int main() {
  cin.tie(nullptr);
  ios::sync_with_stdio(false);
  int N;
  cin >> N;
  vector< int > A(N), B(N);
  for(auto &a: A) cin >> a;
  for(auto &b: B) cin >> b;
  cout << solve(A, B).val() << " " << solve(B, A).val() << "\n";
}
0