結果
| 問題 |
No.1916 Making Palindrome on Gird
|
| コンテスト | |
| ユーザー |
mkawa2
|
| 提出日時 | 2022-04-29 22:47:00 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 1,834 bytes |
| コンパイル時間 | 285 ms |
| コンパイル使用メモリ | 82,432 KB |
| 実行使用メモリ | 269,308 KB |
| 最終ジャッジ日時 | 2024-06-29 04:24:18 |
| 合計ジャッジ時間 | 16,481 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 25 TLE * 5 |
ソースコード
import sys
# sys.setrecursionlimit(200005)
int1 = lambda x: int(x)-1
pDB = lambda *x: print(*x, end="\n", file=sys.stderr)
p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr)
def II(): return int(sys.stdin.readline())
def LI(): return list(map(int, sys.stdin.readline().split()))
def LLI(rows_number): return [LI() for _ in range(rows_number)]
def LI1(): return list(map(int1, sys.stdin.readline().split()))
def LLI1(rows_number): return [LI1() for _ in range(rows_number)]
def SI(): return sys.stdin.readline().rstrip()
# dij = [(0, 1), (-1, 0), (0, -1), (1, 0)]
# dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)]
inf = (1 << 63)-1
# inf = (1 << 31)-1
md = 10**9+7
# md = 998244353
from collections import defaultdict
h, w = LI()
n = h+w-1
ss = [SI() for _ in range(h)]
if ss[0][0] != ss[h-1][w-1]:
print(0)
exit()
dij = [(0, -1, 0, 1), (-1, 0, 0, 1), (0, -1, 1, 0), (-1, 0, 1, 0)]
dp = defaultdict(int)
mid = (n-1)//2
if n & 1:
for i in range(h):
j = mid-i
if not 0 <= j < w: continue
dp[i, j, i, j] = 1
else:
for i in range(h):
j = mid-i
if not 0 <= j < w: continue
for u, v in [(i+1, j), (i, j+1)]:
if 0 <= u < h and 0 <= v < w and ss[i][j] == ss[u][v]:
dp[i, j, u, v] = 1
for _ in range(mid):
ndp = defaultdict(int)
for (i, j, u, v), pre in dp.items():
for di, dj, du, dv in dij:
ni, nj, nu, nv = i+di, j+dj, u+du, v+dv
if not 0 <= ni < h: continue
if not 0 <= nj < w: continue
if not 0 <= nu < h: continue
if not 0 <= nv < w: continue
if ss[ni][nj] != ss[nu][nv]: continue
ndp[ni, nj, nu, nv] += pre
ndp[ni, nj, nu, nv] %= md
dp = ndp
# pDB(dp)
print(dp[0, 0, h-1, w-1])
mkawa2