結果
問題 | No.183 たのしい排他的論理和(EASY) |
ユーザー | daris |
提出日時 | 2022-04-30 14:31:03 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 156 ms / 5,000 ms |
コード長 | 3,879 bytes |
コンパイル時間 | 2,087 ms |
コンパイル使用メモリ | 211,596 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-06-29 20:08:49 |
合計ジャッジ時間 | 3,726 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 2 ms
6,944 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 3 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 156 ms
6,940 KB |
testcase_08 | AC | 136 ms
6,944 KB |
testcase_09 | AC | 93 ms
6,940 KB |
testcase_10 | AC | 113 ms
6,940 KB |
testcase_11 | AC | 147 ms
6,944 KB |
testcase_12 | AC | 2 ms
6,940 KB |
testcase_13 | AC | 2 ms
6,944 KB |
testcase_14 | AC | 122 ms
6,944 KB |
testcase_15 | AC | 154 ms
6,940 KB |
testcase_16 | AC | 2 ms
6,944 KB |
testcase_17 | AC | 35 ms
6,940 KB |
testcase_18 | AC | 148 ms
6,940 KB |
testcase_19 | AC | 19 ms
6,948 KB |
ソースコード
#if !__INCLUDE_LEVEL__ #include __FILE__ template<class T> int lower(V<T> &a, T &k) { int ok = a.size(), ng = -1; while(abs(ok - ng) > 1) { int mid = (ok + ng) / 2; if(a[mid] >= k) ok = mid; else ng = mid; } return ok; } template<class T> int upper(V<T> &a, T &k) { int ok = a.size(), ng = -1; while(abs(ok - ng) > 1) { int mid = (ok + ng) / 2; if(a[mid] > k) ok = mid; else ng = mid; } return ok; } class FactorialMod { void calc_inverse() { inverse[0] = 0; inverse[1] = 1; rep(i, 2, max_num + 1) { inverse[i] = mod - ((mod / i) * inverse[mod % i] % mod); } } void calc_factorial_inverse() { factorial[0] = factorial_inverse[0] = 1; rep(i, 1, max_num + 1) { factorial[i] = (factorial[i - 1] * i) % mod; factorial_inverse[i] = (factorial_inverse[i - 1] * inverse[i]) % mod; } } public: int max_num; int mod; vll inverse; vll factorial; vll factorial_inverse; FactorialMod(int _max_num, int _mod) { max_num = _max_num; mod = _mod; inverse = vll(max_num + 1); factorial = vll(max_num + 1); factorial_inverse = vll(max_num + 1); calc_inverse(); calc_factorial_inverse(); } ll conbination_mod(int n, int k) { if(min(n, k) < 0 || max(n, k) > max_num || k > n) return 0; return (((factorial[n] * factorial_inverse[k]) % mod) * factorial_inverse[n - k]) % mod; } ll multi_choose_mod(int n, int k) { return conbination_mod(n + k - 1, k); } }; int main() { int n; cin >> n; int y = power(2, 15); vi dp(y); dp[0] = 1; for(int i = 0; i < n; i++) { int a; cin >> a; vi ndp(y); swap(dp, ndp); for(int j = 0; j < y; j++) { if(ndp[j] == 1) { dp[j] = 1; dp[j ^ a] = 1; } } } int ans = 0; for(auto &c : dp) if(c) ans++; print(ans); return 0; } /* */ #else #include <bits/stdc++.h> using namespace std; #define _GLIBCXX_DEBUG #define all(v) v.begin(), v.end() #define rall(v) v.rbegin(), v.rend() #define rep(i, j, n) for(int i = j; i < n ; i++) template<class T> using V = vector<T>; template<class T> using VV = V<V<T>>; using ll = long long; using ld = long double; using pii = pair<int, int>; using psi = pair<string, int>; using pll = pair<ll, ll>; using vi = V<int>; using vd = V<double>; using vc = V<char>; using vs = V<string>; using vll = V<ll>; using vld = V<ld>; using vvi = V<vi>; using vvd = V<vd>; using vvll = V<vll>; using vvld = V<vld>; using vvc = V<vc>; //const ll mod = 998244353; const ll mod = 1000000007; template<typename T> bool chmax(T& a, const T &b) { if (a < b) { a = b; return true; } return false; } template<typename T> bool chmin(T& a, const T &b) { if (a > b) { a = b; return true; } return false; } template<class... T> void input(T&... a) { (cin >> ... >> a); } template<class T> void print(const T &a) { cout << a << '\n'; } template<class T, class... Ts> void print(const T& a, const Ts&... b) { cout << a; (cout << ... << (cout << ' ', b)); cout << '\n'; } ll power(ll n, ll k) { ll res = 1; while(k) { if(k & 1) res *= n; n *= n; k >>= 1; } return res; } ll power_mod(ll n, ll k) { ll res = 1; while(k) { if(k & 1) res = res * n % mod; n = n * n % mod; k >>= 1; } return res; } bool is_prime(ll n) { if(n == 1) return 0; for(ll i = 2; i * i <= n; i++) if(n % i == 0) return 0; return 1; } V<ll> enum_divisors(ll n) { V<ll> res; for(ll i = 1; i * i <= n; i++) if(n % i == 0) { res.push_back(i); if(n / i != i) res.push_back(n / i); } sort(all(res)); return res; } V<pll> prime_factorize(ll n) { V<pll> res; for(ll i = 2; i * i <= n; i++) { if(n % i != 0) continue; ll ex = 0; while(n % i == 0) { ex++; n /= i; } res.push_back({i, ex}); } if(n != 1) res.push_back({n, 1}); return res; } const int inf = 1LL << 30; const ll infl = 1LL << 60; #endif