結果

問題 No.391 CODING WAR
ユーザー KowerKoint2010KowerKoint2010
提出日時 2022-05-02 08:59:10
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 77 ms / 2,000 ms
コード長 12,817 bytes
コンパイル時間 2,584 ms
コンパイル使用メモリ 227,296 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-07-01 11:42:55
合計ジャッジ時間 3,826 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 2 ms
6,944 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 2 ms
6,944 KB
testcase_08 AC 2 ms
6,940 KB
testcase_09 AC 77 ms
6,940 KB
testcase_10 AC 71 ms
6,940 KB
testcase_11 AC 2 ms
6,944 KB
testcase_12 AC 2 ms
6,940 KB
testcase_13 AC 65 ms
6,940 KB
testcase_14 AC 57 ms
6,944 KB
testcase_15 AC 63 ms
6,940 KB
testcase_16 AC 40 ms
6,940 KB
testcase_17 AC 46 ms
6,940 KB
testcase_18 AC 32 ms
6,940 KB
testcase_19 AC 32 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 2 "library/KowerKoint/base.hpp"

#ifndef ONLINE_JUDGE
#define _GLIBCXX_DEBUG
#endif

#include <bits/stdc++.h>
using namespace std;

#define REP(i, n) for(int i = 0; i < (int)(n); i++)
#define FOR(i, a, b) for(ll i = a; i < (ll)(b); i++)
#define ALL(a) (a).begin(),(a).end()
#define END(...) { print(__VA_ARGS__); return; }

using VI = vector<int>;
using VVI = vector<VI>;
using VVVI = vector<VVI>;
using ll = long long;
using VL = vector<ll>;
using VVL = vector<VL>;
using VVVL = vector<VVL>;
using VD = vector<double>;
using VVD = vector<VD>;
using VVVD = vector<VVD>;
using VS = vector<string>;
using VVS = vector<VS>;
using VVVS = vector<VVS>;
using VC = vector<char>;
using VVC = vector<VC>;
using VVVC = vector<VVC>;
using P = pair<int, int>;
using VP = vector<P>;
using VVP = vector<VP>;
using VVVP = vector<VVP>;
using LP = pair<ll, ll>;
using VLP = vector<LP>;
using VVLP = vector<VLP>;
using VVVLP = vector<VVLP>;

template <typename T>
using PQ = priority_queue<T>;
template <typename T>
using GPQ = priority_queue<T, vector<T>, greater<T>>;

constexpr int INF = 1001001001;
constexpr ll LINF = 1001001001001001001ll;
constexpr int DX[] = {1, 0, -1, 0};
constexpr int DY[] = {0, 1, 0, -1};

void print() { cout << '\n'; }
template<typename T>
void print(const T &t) { cout << t << '\n'; }
template<typename Head, typename... Tail>
void print(const Head &head, const Tail &... tail) {
    cout << head << ' ';
    print(tail...);
}

#ifdef ONLINE_JUDGE
template<typename... Args>
void dbg(const Args &... args) {}
#else
void dbg() { cerr << '\n'; }
template<typename T>
void dbg(const T &t) { cerr << t << '\n'; }
template<typename Head, typename... Tail>
void dbg(const Head &head, const Tail &... tail) {
    cerr << head << ' ';
    dbg(tail...);
}
#endif

template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 >& p) {
    os << p.first << " " << p.second;
    return os;
}

template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
    is >> p.first >> p.second;
    return is;
}

template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
    for(int i = 0; i < (int) v.size(); i++) {
        os << v[i] << (i + 1 != (int) v.size() ? " " : "");
    }
    return os;
}

template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
    for(T &in : v) is >> in;
    return is;
}

template<typename T>
vector<vector<T>> split(typename vector<T>::const_iterator begin, typename vector<T>::const_iterator end, T val) {
    vector<vector<T>> res;
    vector<T> cur;
    for(auto it = begin; it != end; it++) {
        if(*it == val) {
            res.push_back(cur);
            cur.clear();
        } else cur.push_back(val);
    }
    res.push_back(cur);
    return res;
}

vector<string> split(typename string::const_iterator begin, typename string::const_iterator end, char val) {
    vector<string> res;
    string cur = "";
    for(auto it = begin; it != end; it++) {
        if(*it == val) {
            res.push_back(cur);
            cur.clear();
        } else cur.push_back(val);
    }
    res.push_back(cur);
    return res;
}

template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }

template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }

template <typename T>
pair<VI, vector<T>> compress(const vector<T> &a) {
    int n = a.size();
    vector<T> x;
    REP(i, n) x.push_back(a[i]);
    sort(ALL(x)); x.erase(unique(ALL(x)), x.end());
    VI res(n);
    REP(i, n) res[i] = lower_bound(ALL(x), a[i]) - x.begin();
    return make_pair(res, x);
}

template <typename T>
pair<vector<T>, vector<T>> factorial(int n) {
    vector<T> res(n+1), rev(n+1);
    res[0] = 1;
    REP(i, n) res[i+1] = res[i] * (i+1);
    rev[n] = 1 / res[n];
    for(int i = n; i > 0; i--) {
        rev[i-1] = rev[i] * i;
    }
    return make_pair(res, rev);
}
#line 2 "library/KowerKoint/test/yukicoder-391/main.cpp"

/* #include <atcoder/all> */
/* using namespace atcoder; */
/* #include "KowerKoint/expansion/ac-library/all.hpp" */
#line 3 "library/KowerKoint/internal_operator.hpp"

namespace internal_operator {
    template <typename T>
    T default_add(T a, T b) { return a + b; }
    template <typename T>
    T default_sub(T a, T b) { return a - b; }
    template <typename T>
    T zero() { return T(0); }
    template <typename T>
    T default_div(T a, T b) { return a / b; }
    template <typename T>
    T default_mult(T a, T b) { return a * b; }
    template <typename T>
    T one() { return T(1); }
    template <typename T>
    T default_xor(T a, T b) { return a ^ b; }
    template <typename T>
    T default_and(T a, T b) { return a & b; }
    template <typename T>
    T default_or(T a, T b) { return a | b; }
    ll mod3() { return 998244353LL; }
    ll mod7() { return 1000000007LL; }
    ll mod9() { return 1000000009LL; }
}

#line 3 "library/KowerKoint/integer.hpp"

VL divisor(ll n) {
    assert(n > 0);
    VL fow, bck;
    for(ll i = 1; i * i <= n; i++) {
        if(n % i == 0) {
            fow.push_back(i);
            if(i * i != n) bck.push_back(n / i);
        }
    }
    reverse(ALL(bck));
    fow.insert(fow.end(), ALL(bck));
    return fow;
}

bool is_prime(ll n) {
    assert(n > 0);
    for(ll d = 2; d*d <= n; d++) {
        if(n % d == 0) return false;
    }
    return true;
}

VL least_prime_factors(ll n) {
    assert(n > 0);
    VL lpfs(n+1, -1), primes;
    FOR(d, 2, n+1) {
        if(lpfs[d] == -1) {
            lpfs[d] = d;
            primes.push_back(d);
        }
        for(ll p : primes) {
            if(p * d > n || p > lpfs[d]) break;
            lpfs[p*d] = p;
        }
    }
    return lpfs;
}

VL prime_list(ll n) {
    assert(n > 0);
    VL primes;
    vector<bool> sieved(n+1);
    FOR(d, 2, n+1) {
        if(!sieved[d]) {
            primes.push_back(d);
            for(ll i = d*d; i <= n; i += d) sieved[i] = 1;
        }
    }
    return primes;
}

map<ll, int> prime_factor(ll n) {
    assert(n > 0);
    map<ll, int> factor;
    for(ll d = 2; d*d <= n; d++) {
        while(n%d == 0) {
            n /= d;
            factor[d]++;
        }
    }
    if(n > 1) factor[n]++;
    return factor;
}

ll extgcd(ll a, ll b, ll& x, ll& y) {
    x = 1, y = 0;
    ll nx = 0, ny = 1;
    while(b) {
        ll q = a / b;
        tie(a, b) = LP(b, a % b);
        tie(x, nx) = LP(nx, x - nx*q);
        tie(y, ny) = LP(ny, y - ny*q);
    }
    return a;
}

ll inv_mod(ll n, ll m) {
    ll x, y;
    assert(extgcd(n, m, x, y) == 1);
    x %= m;
    if(x < 0) x += m;
    return x;
}

ll pow_mod(ll a, ll n, ll m) {
    if(n == 0) return 1LL;
    if(n < 0) return inv_mod(pow_mod(a, -n, m), m);
    ll res = 1;
    while(n) {
        if(n & 1) {
            res *= a;
            res %= m;
        }
        n >>= 1;
        a *= a;
        a %= m;
    }
    return res;
}

#line 5 "library/KowerKoint/modint.hpp"

template <ll (*mod)()>
struct Modint {
    ll val;
    
    Modint(): val(0) {}

    Modint(ll x): val(x) {
        val %= mod();
        if(val < 0) val += mod();
    }

    Modint& operator+=(const Modint& r) {
        val += r.val;
        if(val >= mod()) val -= mod();
        return *this;
    }
    friend Modint operator+(const Modint& l, const Modint& r) {
        return Modint(l) += r;
    }

    Modint& operator-=(const Modint& r) {
        val -= r.val;
        if(val < mod()) val += mod();
        return *this;
    }
    friend Modint operator-(const Modint& l, const Modint& r) {
        return Modint(l) -= r;
    }

    Modint& operator*=(const Modint& r) {
        val *= r.val;
        val %= mod();
        return *this;
    }
    Modint operator*(const Modint& r) {
        return (Modint(*this) *= r);
    }
    friend Modint operator*(const Modint& l, const Modint& r) {
        return Modint(l) *= r;
    }

    Modint pow(ll n) const {
        return Modint(pow_mod(val, n, mod()));
    }

    Modint inv() const {
        return Modint(inv_mod(val, mod()));
    }

    Modint& operator/=(const Modint& r) {
        return (*this *= r.inv());
    }
    friend Modint operator/(const Modint& l, const Modint& r) {
        return Modint(l) /= r;
    }

    Modint& operator^=(const ll n) {
        val = pow_mod(val, n, mod());
        return *this;
    }
    Modint operator^(const ll n) {
        return this->pow(n);
    }

    Modint operator+() const { return *this; }
    Modint operator-() const { return Modint() - *this; }

    Modint& operator++() {
        val++;
        if(val == mod()) val = 0LL;
        return *this;
    }
    Modint& operator++(int) {
        Modint res(*this);
        ++*this;
        return res;
    }

    Modint& operator--() {
        if(val == 0LL) val = mod();
        val--;
        return *this;
    }
    Modint& operator--(int) {
        Modint res(*this);
        --*this;
        return res;
    }

    friend bool operator==(const Modint& l, const Modint& r) {
        return l.val == r.val;
    }
    friend bool operator!=(const Modint& l, const Modint& r) {
        return l.val != r.val;
    }

    static pair<vector<Modint>, vector<Modint>> factorial(int n) {
        vector<Modint> fact(n+1), rfact(n+1);
        fact[0] = 1;
        REP(i, n) fact[i+1] = fact[i] * (i+1);
        rfact[n] = 1 / fact[n];
        for(int i = n-1; i >= 0; i--) rfact[i] = rfact[i+1] * (i+1);
        return {fact, rfact};
    }

    friend istream& operator>>(istream& is, Modint& mi) {
        is >> mi.val;
        return is;
    }

    friend ostream& operator<<(ostream& os, const Modint& mi) {
        os << mi.val;
        return os;
    }
};

using MI3 = Modint<internal_operator::mod3>;
using V3 = vector<MI3>;
using VV3 = vector<V3>;
using VVV3 = vector<VV3>;
using MI7 = Modint<internal_operator::mod7>;
using V7 = vector<MI7>;
using VV7 = vector<V7>;
using VVV7 = vector<VV7>;
using MI9 = Modint<internal_operator::mod9>;
using V9 = vector<MI9>;
using VV9 = vector<V9>;
using VVV9 = vector<VV9>;
#line 3 "library/KowerKoint/counting.hpp"

template <typename T>
struct Counting {
    vector<T> fact, ifact;

    Counting() {}

    void expand(ll n) {
        ll sz = (ll)fact.size();
        if(sz > n) return;
        fact.resize(n+1);
        ifact.resize(n+1);
        fact[0] = 1;
        FOR(i, max(1LL, sz), n+1) fact[i] = fact[i-1] * i;
        ifact[n] = 1 / fact[n];
        for(ll i = n-1; i >= sz; i--) ifact[i] = ifact[i+1] * (i+1);
    }

    T permutation(ll n, ll r) {
        assert(n >= r);
        assert(r >= 0);
        expand(n);
        return fact[n] * ifact[n-r];
    }

    T combination(ll n, ll r) {
        assert(n >= r);
        assert(r >= 0);
        expand(n);
        return fact[n] * ifact[r] * ifact[n-r];
    }

    T stirling(ll n, ll k) {
        assert(n >= k);
        assert(k >= 0);
        if(n == 0) return 1;
        T res = 0;
        int sign = k%2? -1 : 1;
        expand(k);
        REP(i, k+1) {
            res += sign * ifact[i] * ifact[k-i] * T(i).pow(n);
            sign *= -1;
        }
        return res;
    }

    vector<vector<T>> stirling_table(ll n, ll k) {
        assert(n >= 0 && k >= 0);
        vector<vector<T>> res(n+1, vector<T>(k+1));
        res[0][0] = 1;
        FOR(i, 1, n+1) FOR(j, 1, k+1) {
            res[i][j] = res[i-1][j-1] + j * res[i-1][j];
        }
        return res;
    }

    T bell(ll n, ll k) {
        assert(n >= k);
        assert(k >= 0);
        expand(k);
        vector<T> tmp(k+1);
        int sign = 1;
        tmp[0] = 1;
        FOR(i, 1, k+1) {
            sign *= -1;
            tmp[i] = tmp[i-1] + sign * ifact[i];
        }
        T res = 0;
        REP(i, k+1) {
            res += T(i).pow(n) * ifact[i] * tmp[k-i];
        }
        return res;
    }

    vector<vector<T>> partition_table(ll n, ll k) {
        vector<vector<T>> res(n+1, vector<T>(k+1));
        res[0][0] = 1;
        FOR(i, 1, n+1) FOR(j, 1, i+1) {
            res[i][j] = res[i][j-1] + res[i-j][j];
        }
        return res;
    }
};
#line 8 "library/KowerKoint/test/yukicoder-391/main.cpp"

void solve(){
    ll n, m; cin >> n >> m;
    if(n < m) {
        print(0);
        return;
    }
    Counting<MI7> counting;
    counting.expand(m);
    print(counting.stirling(n, m) * counting.fact[m]);
}

// generated by oj-template v4.7.2 (https://github.com/online-judge-tools/template-generator)
int main() {
    // Fasterize input/output script
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout << fixed << setprecision(100);
    // scanf/printf user should delete this fasterize input/output script

    int t = 1;
    //cin >> t; // comment out if solving multi testcase
    for(int testCase = 1;testCase <= t;++testCase){
        solve();
    }
    return 0;
}
0