結果
| 問題 |
No.391 CODING WAR
|
| コンテスト | |
| ユーザー |
KowerKoint2010
|
| 提出日時 | 2022-05-02 08:59:10 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 81 ms / 2,000 ms |
| コード長 | 12,817 bytes |
| コンパイル時間 | 3,543 ms |
| コンパイル使用メモリ | 216,616 KB |
| 最終ジャッジ日時 | 2025-01-29 01:42:57 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 16 |
ソースコード
#line 2 "library/KowerKoint/base.hpp"
#ifndef ONLINE_JUDGE
#define _GLIBCXX_DEBUG
#endif
#include <bits/stdc++.h>
using namespace std;
#define REP(i, n) for(int i = 0; i < (int)(n); i++)
#define FOR(i, a, b) for(ll i = a; i < (ll)(b); i++)
#define ALL(a) (a).begin(),(a).end()
#define END(...) { print(__VA_ARGS__); return; }
using VI = vector<int>;
using VVI = vector<VI>;
using VVVI = vector<VVI>;
using ll = long long;
using VL = vector<ll>;
using VVL = vector<VL>;
using VVVL = vector<VVL>;
using VD = vector<double>;
using VVD = vector<VD>;
using VVVD = vector<VVD>;
using VS = vector<string>;
using VVS = vector<VS>;
using VVVS = vector<VVS>;
using VC = vector<char>;
using VVC = vector<VC>;
using VVVC = vector<VVC>;
using P = pair<int, int>;
using VP = vector<P>;
using VVP = vector<VP>;
using VVVP = vector<VVP>;
using LP = pair<ll, ll>;
using VLP = vector<LP>;
using VVLP = vector<VLP>;
using VVVLP = vector<VVLP>;
template <typename T>
using PQ = priority_queue<T>;
template <typename T>
using GPQ = priority_queue<T, vector<T>, greater<T>>;
constexpr int INF = 1001001001;
constexpr ll LINF = 1001001001001001001ll;
constexpr int DX[] = {1, 0, -1, 0};
constexpr int DY[] = {0, 1, 0, -1};
void print() { cout << '\n'; }
template<typename T>
void print(const T &t) { cout << t << '\n'; }
template<typename Head, typename... Tail>
void print(const Head &head, const Tail &... tail) {
cout << head << ' ';
print(tail...);
}
#ifdef ONLINE_JUDGE
template<typename... Args>
void dbg(const Args &... args) {}
#else
void dbg() { cerr << '\n'; }
template<typename T>
void dbg(const T &t) { cerr << t << '\n'; }
template<typename Head, typename... Tail>
void dbg(const Head &head, const Tail &... tail) {
cerr << head << ' ';
dbg(tail...);
}
#endif
template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 >& p) {
os << p.first << " " << p.second;
return os;
}
template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
is >> p.first >> p.second;
return is;
}
template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
for(int i = 0; i < (int) v.size(); i++) {
os << v[i] << (i + 1 != (int) v.size() ? " " : "");
}
return os;
}
template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
for(T &in : v) is >> in;
return is;
}
template<typename T>
vector<vector<T>> split(typename vector<T>::const_iterator begin, typename vector<T>::const_iterator end, T val) {
vector<vector<T>> res;
vector<T> cur;
for(auto it = begin; it != end; it++) {
if(*it == val) {
res.push_back(cur);
cur.clear();
} else cur.push_back(val);
}
res.push_back(cur);
return res;
}
vector<string> split(typename string::const_iterator begin, typename string::const_iterator end, char val) {
vector<string> res;
string cur = "";
for(auto it = begin; it != end; it++) {
if(*it == val) {
res.push_back(cur);
cur.clear();
} else cur.push_back(val);
}
res.push_back(cur);
return res;
}
template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }
template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }
template <typename T>
pair<VI, vector<T>> compress(const vector<T> &a) {
int n = a.size();
vector<T> x;
REP(i, n) x.push_back(a[i]);
sort(ALL(x)); x.erase(unique(ALL(x)), x.end());
VI res(n);
REP(i, n) res[i] = lower_bound(ALL(x), a[i]) - x.begin();
return make_pair(res, x);
}
template <typename T>
pair<vector<T>, vector<T>> factorial(int n) {
vector<T> res(n+1), rev(n+1);
res[0] = 1;
REP(i, n) res[i+1] = res[i] * (i+1);
rev[n] = 1 / res[n];
for(int i = n; i > 0; i--) {
rev[i-1] = rev[i] * i;
}
return make_pair(res, rev);
}
#line 2 "library/KowerKoint/test/yukicoder-391/main.cpp"
/* #include <atcoder/all> */
/* using namespace atcoder; */
/* #include "KowerKoint/expansion/ac-library/all.hpp" */
#line 3 "library/KowerKoint/internal_operator.hpp"
namespace internal_operator {
template <typename T>
T default_add(T a, T b) { return a + b; }
template <typename T>
T default_sub(T a, T b) { return a - b; }
template <typename T>
T zero() { return T(0); }
template <typename T>
T default_div(T a, T b) { return a / b; }
template <typename T>
T default_mult(T a, T b) { return a * b; }
template <typename T>
T one() { return T(1); }
template <typename T>
T default_xor(T a, T b) { return a ^ b; }
template <typename T>
T default_and(T a, T b) { return a & b; }
template <typename T>
T default_or(T a, T b) { return a | b; }
ll mod3() { return 998244353LL; }
ll mod7() { return 1000000007LL; }
ll mod9() { return 1000000009LL; }
}
#line 3 "library/KowerKoint/integer.hpp"
VL divisor(ll n) {
assert(n > 0);
VL fow, bck;
for(ll i = 1; i * i <= n; i++) {
if(n % i == 0) {
fow.push_back(i);
if(i * i != n) bck.push_back(n / i);
}
}
reverse(ALL(bck));
fow.insert(fow.end(), ALL(bck));
return fow;
}
bool is_prime(ll n) {
assert(n > 0);
for(ll d = 2; d*d <= n; d++) {
if(n % d == 0) return false;
}
return true;
}
VL least_prime_factors(ll n) {
assert(n > 0);
VL lpfs(n+1, -1), primes;
FOR(d, 2, n+1) {
if(lpfs[d] == -1) {
lpfs[d] = d;
primes.push_back(d);
}
for(ll p : primes) {
if(p * d > n || p > lpfs[d]) break;
lpfs[p*d] = p;
}
}
return lpfs;
}
VL prime_list(ll n) {
assert(n > 0);
VL primes;
vector<bool> sieved(n+1);
FOR(d, 2, n+1) {
if(!sieved[d]) {
primes.push_back(d);
for(ll i = d*d; i <= n; i += d) sieved[i] = 1;
}
}
return primes;
}
map<ll, int> prime_factor(ll n) {
assert(n > 0);
map<ll, int> factor;
for(ll d = 2; d*d <= n; d++) {
while(n%d == 0) {
n /= d;
factor[d]++;
}
}
if(n > 1) factor[n]++;
return factor;
}
ll extgcd(ll a, ll b, ll& x, ll& y) {
x = 1, y = 0;
ll nx = 0, ny = 1;
while(b) {
ll q = a / b;
tie(a, b) = LP(b, a % b);
tie(x, nx) = LP(nx, x - nx*q);
tie(y, ny) = LP(ny, y - ny*q);
}
return a;
}
ll inv_mod(ll n, ll m) {
ll x, y;
assert(extgcd(n, m, x, y) == 1);
x %= m;
if(x < 0) x += m;
return x;
}
ll pow_mod(ll a, ll n, ll m) {
if(n == 0) return 1LL;
if(n < 0) return inv_mod(pow_mod(a, -n, m), m);
ll res = 1;
while(n) {
if(n & 1) {
res *= a;
res %= m;
}
n >>= 1;
a *= a;
a %= m;
}
return res;
}
#line 5 "library/KowerKoint/modint.hpp"
template <ll (*mod)()>
struct Modint {
ll val;
Modint(): val(0) {}
Modint(ll x): val(x) {
val %= mod();
if(val < 0) val += mod();
}
Modint& operator+=(const Modint& r) {
val += r.val;
if(val >= mod()) val -= mod();
return *this;
}
friend Modint operator+(const Modint& l, const Modint& r) {
return Modint(l) += r;
}
Modint& operator-=(const Modint& r) {
val -= r.val;
if(val < mod()) val += mod();
return *this;
}
friend Modint operator-(const Modint& l, const Modint& r) {
return Modint(l) -= r;
}
Modint& operator*=(const Modint& r) {
val *= r.val;
val %= mod();
return *this;
}
Modint operator*(const Modint& r) {
return (Modint(*this) *= r);
}
friend Modint operator*(const Modint& l, const Modint& r) {
return Modint(l) *= r;
}
Modint pow(ll n) const {
return Modint(pow_mod(val, n, mod()));
}
Modint inv() const {
return Modint(inv_mod(val, mod()));
}
Modint& operator/=(const Modint& r) {
return (*this *= r.inv());
}
friend Modint operator/(const Modint& l, const Modint& r) {
return Modint(l) /= r;
}
Modint& operator^=(const ll n) {
val = pow_mod(val, n, mod());
return *this;
}
Modint operator^(const ll n) {
return this->pow(n);
}
Modint operator+() const { return *this; }
Modint operator-() const { return Modint() - *this; }
Modint& operator++() {
val++;
if(val == mod()) val = 0LL;
return *this;
}
Modint& operator++(int) {
Modint res(*this);
++*this;
return res;
}
Modint& operator--() {
if(val == 0LL) val = mod();
val--;
return *this;
}
Modint& operator--(int) {
Modint res(*this);
--*this;
return res;
}
friend bool operator==(const Modint& l, const Modint& r) {
return l.val == r.val;
}
friend bool operator!=(const Modint& l, const Modint& r) {
return l.val != r.val;
}
static pair<vector<Modint>, vector<Modint>> factorial(int n) {
vector<Modint> fact(n+1), rfact(n+1);
fact[0] = 1;
REP(i, n) fact[i+1] = fact[i] * (i+1);
rfact[n] = 1 / fact[n];
for(int i = n-1; i >= 0; i--) rfact[i] = rfact[i+1] * (i+1);
return {fact, rfact};
}
friend istream& operator>>(istream& is, Modint& mi) {
is >> mi.val;
return is;
}
friend ostream& operator<<(ostream& os, const Modint& mi) {
os << mi.val;
return os;
}
};
using MI3 = Modint<internal_operator::mod3>;
using V3 = vector<MI3>;
using VV3 = vector<V3>;
using VVV3 = vector<VV3>;
using MI7 = Modint<internal_operator::mod7>;
using V7 = vector<MI7>;
using VV7 = vector<V7>;
using VVV7 = vector<VV7>;
using MI9 = Modint<internal_operator::mod9>;
using V9 = vector<MI9>;
using VV9 = vector<V9>;
using VVV9 = vector<VV9>;
#line 3 "library/KowerKoint/counting.hpp"
template <typename T>
struct Counting {
vector<T> fact, ifact;
Counting() {}
void expand(ll n) {
ll sz = (ll)fact.size();
if(sz > n) return;
fact.resize(n+1);
ifact.resize(n+1);
fact[0] = 1;
FOR(i, max(1LL, sz), n+1) fact[i] = fact[i-1] * i;
ifact[n] = 1 / fact[n];
for(ll i = n-1; i >= sz; i--) ifact[i] = ifact[i+1] * (i+1);
}
T permutation(ll n, ll r) {
assert(n >= r);
assert(r >= 0);
expand(n);
return fact[n] * ifact[n-r];
}
T combination(ll n, ll r) {
assert(n >= r);
assert(r >= 0);
expand(n);
return fact[n] * ifact[r] * ifact[n-r];
}
T stirling(ll n, ll k) {
assert(n >= k);
assert(k >= 0);
if(n == 0) return 1;
T res = 0;
int sign = k%2? -1 : 1;
expand(k);
REP(i, k+1) {
res += sign * ifact[i] * ifact[k-i] * T(i).pow(n);
sign *= -1;
}
return res;
}
vector<vector<T>> stirling_table(ll n, ll k) {
assert(n >= 0 && k >= 0);
vector<vector<T>> res(n+1, vector<T>(k+1));
res[0][0] = 1;
FOR(i, 1, n+1) FOR(j, 1, k+1) {
res[i][j] = res[i-1][j-1] + j * res[i-1][j];
}
return res;
}
T bell(ll n, ll k) {
assert(n >= k);
assert(k >= 0);
expand(k);
vector<T> tmp(k+1);
int sign = 1;
tmp[0] = 1;
FOR(i, 1, k+1) {
sign *= -1;
tmp[i] = tmp[i-1] + sign * ifact[i];
}
T res = 0;
REP(i, k+1) {
res += T(i).pow(n) * ifact[i] * tmp[k-i];
}
return res;
}
vector<vector<T>> partition_table(ll n, ll k) {
vector<vector<T>> res(n+1, vector<T>(k+1));
res[0][0] = 1;
FOR(i, 1, n+1) FOR(j, 1, i+1) {
res[i][j] = res[i][j-1] + res[i-j][j];
}
return res;
}
};
#line 8 "library/KowerKoint/test/yukicoder-391/main.cpp"
void solve(){
ll n, m; cin >> n >> m;
if(n < m) {
print(0);
return;
}
Counting<MI7> counting;
counting.expand(m);
print(counting.stirling(n, m) * counting.fact[m]);
}
// generated by oj-template v4.7.2 (https://github.com/online-judge-tools/template-generator)
int main() {
// Fasterize input/output script
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(100);
// scanf/printf user should delete this fasterize input/output script
int t = 1;
//cin >> t; // comment out if solving multi testcase
for(int testCase = 1;testCase <= t;++testCase){
solve();
}
return 0;
}
KowerKoint2010