結果
問題 | No.1970 ひよこ鑑定士 |
ユーザー | 57tggx |
提出日時 | 2022-05-04 16:55:41 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 710 ms / 2,000 ms |
コード長 | 5,688 bytes |
コンパイル時間 | 1,029 ms |
コンパイル使用メモリ | 84,588 KB |
実行使用メモリ | 13,528 KB |
最終ジャッジ日時 | 2024-09-21 01:11:06 |
合計ジャッジ時間 | 7,551 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 17 ms
5,376 KB |
testcase_08 | AC | 680 ms
13,528 KB |
testcase_09 | AC | 246 ms
7,480 KB |
testcase_10 | AC | 245 ms
7,476 KB |
testcase_11 | AC | 51 ms
5,376 KB |
testcase_12 | AC | 230 ms
7,316 KB |
testcase_13 | AC | 486 ms
10,596 KB |
testcase_14 | AC | 549 ms
11,024 KB |
testcase_15 | AC | 13 ms
5,376 KB |
testcase_16 | AC | 50 ms
5,376 KB |
testcase_17 | AC | 481 ms
10,580 KB |
testcase_18 | AC | 484 ms
10,492 KB |
testcase_19 | AC | 530 ms
10,836 KB |
testcase_20 | AC | 709 ms
13,520 KB |
testcase_21 | AC | 710 ms
13,524 KB |
ソースコード
#include <cstdint> #include <cstddef> #include <utility> #include <vector> #include <iostream> unsigned bit_width(unsigned long long x){ return x ? 8 * sizeof(x) - __builtin_clzll(x) : 0; } template <std::uint32_t MOD> class ModInt { std::uint32_t value; friend std::istream &operator>>(std::istream &is, ModInt &x){ is >> x.value; x.value %= MOD; return is; } public: constexpr ModInt(std::uint32_t x = 0): value(x % MOD) {} constexpr operator std::uint32_t(){ return value; } constexpr ModInt operator-() const { return value == 0 ? 0 : MOD - value; } constexpr ModInt &operator+=(const ModInt &other){ if(value < MOD - other.value) value += other.value; else value -= MOD - other.value; return *this; } constexpr ModInt &operator-=(const ModInt &other){ if(value >= other.value) value -= other.value; else value += MOD - other.value; return *this; } constexpr ModInt &operator*=(const ModInt &other){ value = static_cast<std::uint64_t>(value) * other.value % MOD; return *this; } constexpr ModInt &operator/=(const ModInt &other){ return *this *= other.inv(); } friend constexpr ModInt operator+(ModInt left, const ModInt &right){ return left += right; } friend constexpr ModInt operator-(ModInt left, const ModInt &right){ return left -= right; } friend constexpr ModInt operator*(ModInt left, const ModInt &right){ return left *= right; } friend constexpr ModInt operator/(ModInt left, const ModInt &right){ return left /= right; } constexpr ModInt inv() const; constexpr ModInt pow(unsigned) const; }; template <class T> void fourier_transform(std::vector<T> &x, const std::vector<T> &zetas, bool inverse){ std::size_t length = x.size(), mask = length - 1, bit = length / 2; std::vector<T> tmp(length); while(bit > 0){ for(std::size_t i = 0; i < length; ++i){ std::size_t lower = i & (bit - 1); std::size_t upper = i ^ lower; std::size_t gapped = upper << 1 & mask | lower; if(inverse && upper) upper = length - upper; tmp[i] = x[gapped] + zetas[upper] * x[gapped | bit]; } std::swap(x, tmp); bit /= 2; } } template <class T, class Iterator> void poly_scale(Iterator begin, Iterator end, const T &scalar){ for(Iterator it = begin; it != end; ++it) *it *= scalar; } using Mint = ModInt<998244353>; std::vector<Mint> zetas998244353(const unsigned log2length) { std::size_t length = (std::size_t)1 << log2length; auto zeta = Mint(3).pow(119); for(unsigned i = 0; i < 23 - log2length; ++i) zeta *= zeta; std::vector<Mint> ret(length, 1); for(std::size_t i = 1; i < length; ++i) ret[i] = ret[i - 1] * zeta; return ret; } void poly_mul(std::vector<Mint> &x, std::vector<Mint> y){ unsigned bit = bit_width(x.size() + y.size() - 2); auto n = (std::size_t)1 << bit; x.resize(n, 0); y.resize(n, 0); auto zetas = zetas998244353(bit); fourier_transform(x, zetas, false); fourier_transform(y, zetas, false); for(std::size_t i = 0; i < n; ++i) x[i] *= y[i]; fourier_transform(x, zetas, true); poly_scale(x.begin(), x.end(), Mint(n).inv()); } std::vector<Mint> poly_inv(std::vector<Mint> f, unsigned target_bit){ auto target_length = (std::size_t)1 << target_bit; std::vector<Mint> g(target_length); f.resize(target_length); g[0] = f[0].inv(); for(unsigned i = 0; i < target_bit; ++i){ std::size_t prev_length = (std::size_t)1 << i; std::size_t next_length = (std::size_t)1 << i + 1; std::vector<Mint> partial_g(next_length); std::copy(g.begin(), g.begin() + prev_length, partial_g.begin()); auto zetas = zetas998244353(i + 1); fourier_transform(partial_g, zetas, false); std::vector<Mint> tmp(f.begin(), f.begin() + next_length); fourier_transform(tmp, zetas, false); for(std::size_t i = 0; i < next_length; ++i) tmp[i] *= partial_g[i]; fourier_transform(tmp, zetas, true); for(std::size_t i = 0; i < prev_length; ++i) tmp[i] = 0; poly_scale(tmp.begin() + prev_length, tmp.begin() + next_length, Mint(next_length).inv()); fourier_transform(tmp, zetas, false); for(std::size_t i = 0; i < next_length; ++i) tmp[i] *= partial_g[i]; fourier_transform(tmp, zetas, true); poly_scale(tmp.begin(), tmp.end(), Mint(next_length).inv()); for(std::size_t i = prev_length; i < next_length; ++i) g[i] = -tmp[i]; } return g; } std::vector<Mint> fibonacci_polynomial(unsigned n) { std::vector<Mint> ret(n / 2 + 1); Mint tmp = ret[0] = 1; for(unsigned i = 0; i < n / 2; ++i){ tmp *= n - i * 2; tmp *= n - i * 2 - 1; tmp /= i + 1; tmp /= n - i; ret[i + 1] = i % 2 ? tmp : -tmp; } return ret; } void poly_diff(std::vector<Mint> &x){ for(std::size_t i = 0; i < x.size(); ++i) x[i] *= i; if(x.size() > 1) x.erase(x.begin()); } int main(){ std::size_t n, k; std::cin >> n >> k; Mint entire = 1; for(std::size_t i = 0; i < n; ++i){ entire *= n * 2 - i; entire /= i + 1; } unsigned bit = bit_width(n); auto p = fibonacci_polynomial(k); poly_diff(p); auto q = poly_inv(fibonacci_polynomial(k - 1), bit); if(q.size() > n + 1) q.resize(n + 1); poly_mul(p, std::move(q)); auto r = fibonacci_polynomial(k + 1); poly_diff(r); auto s = poly_inv(fibonacci_polynomial(k), bit); if(s.size() > n + 1) s.resize(n + 1); poly_mul(r, std::move(s)); std::cout << entire - p[n] + r[n] << std::endl; } template <std::uint32_t MOD> constexpr ModInt<MOD> ModInt<MOD>::inv() const { unsigned a = MOD, s = 0; unsigned b = value, t = 1; bool sign = true; while(b){ s += t * (a / b); a %= b; sign = !sign; std::swap(a, b); std::swap(s, t); } if(sign) s = MOD - s; return s; } template <std::uint32_t MOD> constexpr ModInt<MOD> ModInt<MOD>::pow(unsigned n) const { ModInt tmp = *this, ret = 1; while(n){ if(n % 2) ret *= tmp; tmp *= tmp; n /= 2; } return ret; }