結果

問題 No.1502 Many Simple Additions
ユーザー au7777
提出日時 2022-05-05 01:06:17
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 4,062 bytes
コンパイル時間 4,279 ms
コンパイル使用メモリ 245,776 KB
実行使用メモリ 17,872 KB
最終ジャッジ日時 2024-07-04 03:33:01
合計ジャッジ時間 7,155 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 5
other AC * 14 WA * 25
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
#include <atcoder/all>
typedef long long int ll;
typedef long long int ull;
#define MP make_pair
using namespace std;
using namespace atcoder;
typedef pair<ll, ll> P;
// const ll MOD = 998244353;
const ll MOD = 1000000007;
// using mint = modint998244353;
using mint = modint1000000007;
const double pi = 3.1415926536;
const int MAX = 2000005;
long long fac[MAX], finv[MAX], inv[MAX];
template<typename T> using min_priority_queue = priority_queue<T, vector<T>, greater<T>>;
void COMinit() {
fac[0] = fac[1] = 1;
finv[0] = finv[1] = 1;
inv[1] = 1;
for (int i = 2; i < MAX; i++){
fac[i] = fac[i - 1] * i % MOD;
inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;
finv[i] = finv[i - 1] * inv[i] % MOD;
}
}
//
long long COM(int n, int k){
if (n < k) return 0;
if (n < 0 || k < 0) return 0;
return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;
}
ll gcd(ll x, ll y) {
if (y == 0) return x;
else if (y > x) {
return gcd (y, x);
}
else return gcd(x % y, y);
}
ll lcm(ll x, ll y) {
return x / gcd(x, y) * y;
}
ll my_sqrt(ll x) {
ll m = 0;
ll M = 3000000001;
while (M - m > 1) {
ll now = (M + m) / 2;
if (now * now <= x) {
m = now;
}
else {
M = now;
}
}
return m;
}
ll keta(ll n) {
ll ret = 0;
while (n) {
n /= 10;
ret++;
}
return ret;
}
ll ceil(ll n, ll m) {
// n > 0, m > 0
ll ret = n / m;
if (n % m) ret++;
return ret;
}
ll pow_ll(ll x, ll n) {
if (n == 0) return 1;
if (n % 2) {
return pow_ll(x, n - 1) * x;
}
else {
ll tmp = pow_ll(x, n / 2);
return tmp * tmp;
}
}
vector<ll> compress(vector<ll> v) {
// [3 5 5 6 1 1 10 1] -> [1 2 2 3 0 0 4 0]
vector<ll> u = v;
sort(u.begin(), u.end());
u.erase(unique(u.begin(),u.end()),u.end());
map<ll, ll> mp;
for (int i = 0; i < u.size(); i++) {
mp[u[i]] = i;
}
for (int i = 0; i < v.size(); i++) {
v[i] = mp[v[i]];
}
return v;
}
vector<P> v[100001];
bool visited1[100001];
bool visited2[100001];
P dfs1(int cur, int par, int type, ll num, ll k) {
// type1 x + num type2 num - x
visited1[cur] = true;
ll m, M;
if (type == 1) {
m = 1 - num;
M = k - num;
}
else {
m = num - k;
M = num - 1;
}
for (auto x : v[cur]) {
int nex = x.first;
ll c = x.second;
if (visited1[nex]) continue;
P p = dfs1(nex, cur, 3 - type, c - num, k);
m = max(p.first, m);
M = min(p.second, M);
}
return P(m, M);
}
P dfs2(int cur, int par, int type, ll num, ll k) {
// type1 x + num type2 num - x
visited2[cur] = true;
ll m, M;
if (type == 1) {
m = 1 - num;
M = k - num;
}
else {
m = num - k;
M = num - 1;
}
for (auto x : v[cur]) {
int nex = x.first;
ll c = x.second;
if (visited2[nex]) continue;
P p = dfs2(nex, cur, 3 - type, c - num, k);
m = max(p.first, m);
M = min(p.second, M);
}
return P(m, M);
}
int main() {
for (int i = 0; i <= 100000; i++) {
visited1[i] = false;
visited2[i] = false;
}
ll n, m, k;
cin >> n >> m >> k;
dsu d(n);
for (int i = 1; i <= m; i++) {
ll x, y, z;
cin >> x >> y >> z;
x--;
y--;
v[x].push_back({y, z});
v[y].push_back({x, z});
d.merge(x, y);
}
mint ans = 1;
mint ans2 = 1;
for (auto g : d.groups()) {
P p1 = dfs1(g[0], -1, 1, 0, k);
mint tmp1 = max(p1.second - p1.first + 1, (ll)0);
P p2 = dfs2(g[0], -1, 1, 0, k - 1);
mint tmp2 = max(p2.second - p2.first + 1, (ll)0);
// cout << g[0] << ' ' << tmp1.val() << ' ' << tmp2.val() << endl;
ans *= tmp1;
ans2 *= tmp2;
}
mint ret = ans - ans2;
cout << ret.val() << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0