結果
問題 | No.1931 Fraction 2 |
ユーザー | kaichou243 |
提出日時 | 2022-05-06 21:41:19 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 23,680 bytes |
コンパイル時間 | 1,910 ms |
コンパイル使用メモリ | 210,240 KB |
実行使用メモリ | 11,600 KB |
最終ジャッジ日時 | 2024-07-06 17:17:22 |
合計ジャッジ時間 | 6,145 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 1 ms
6,940 KB |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | WA | - |
testcase_35 | WA | - |
testcase_36 | WA | - |
testcase_37 | WA | - |
testcase_38 | WA | - |
ソースコード
#include<bits/stdc++.h> #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #define FOR(i,n) for(int i = 0; i < (n); i++) #define sz(c) ((int)(c).size()) #define ten(x) ((int)1e##x) #define all(v) (v).begin(), (v).end() using namespace std; using ll=long long; using P = pair<ll,ll>; const long double PI=acos(-1); const ll INF=1e18; const int inf=1e9; template<int MOD> struct Fp{ ll val; constexpr Fp(long long v = 0) noexcept : val(v % MOD) { if (val < 0) val += MOD; } static constexpr int getmod() { return MOD; } constexpr Fp operator - () const noexcept { return val ? MOD - val : 0; } constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; } constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; } constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; } constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; } constexpr Fp& operator += (const Fp& r) noexcept { val += r.val; if (val >= MOD) val -= MOD; return *this; } constexpr Fp& operator -= (const Fp& r) noexcept { val -= r.val; if (val < 0) val += MOD; return *this; } constexpr Fp& operator *= (const Fp& r) noexcept { val = val * r.val % MOD; return *this; } constexpr Fp& operator /= (const Fp& r) noexcept { ll a = r.val, b = MOD, u = 1, v = 0; while (b) { ll t = a / b; a -= t * b, swap(a, b); u -= t * v, swap(u, v); } val = val * u % MOD; if (val < 0) val += MOD; return *this; } constexpr bool operator == (const Fp& r) const noexcept { return this->val == r.val; } constexpr bool operator != (const Fp& r) const noexcept { return this->val != r.val; } constexpr bool operator < (const Fp& r) const noexcept { return this->val < r.val; } friend constexpr istream& operator >> (istream& is, Fp<MOD>& x) noexcept { is >> x.val; x.val %= MOD; if (x.val < 0) x.val += MOD; return is; } friend constexpr ostream& operator << (ostream& os, const Fp<MOD>& x) noexcept { return os << x.val; } friend constexpr Fp<MOD> modpow(const Fp<MOD>& a, long long n) noexcept { Fp<MOD> res=1,r=a; while(n){ if(n&1) res*=r; r*=r; n>>=1; } return res; } friend constexpr Fp<MOD> modinv(const Fp<MOD>& r) noexcept { long long a = r.val, b = MOD, u = 1, v = 0; while (b) { long long t = a / b; a -= t * b, swap(a, b); u -= t * v, swap(u, v); } return Fp<MOD>(u); } explicit operator bool()const{ return val; } }; ll modpow(ll a,ll n,ll mod){ ll res=1; a%=mod; while (n>0){ if (n & 1) res*=a; a *= a; a%=mod; n >>= 1; res%=mod; } return res; } ll modinv(ll a, ll mod) { ll b = mod, u = 1, v = 0; while (b) { ll t = a/b; a -= t * b, swap(a, b); u -= t * v, swap(u, v); } u %= mod; if (u < 0) u += mod; return u; } namespace NTT { int calc_primitive_root(int mod) { if (mod == 2) return 1; if (mod == 167772161) return 3; if (mod == 469762049) return 3; if (mod == 754974721) return 11; if (mod == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; long long x = (mod - 1) / 2; while (x % 2 == 0) x /= 2; for (long long i = 3; i * i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) x /= i; } } if (x > 1) divs[cnt++] = x; for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (modpow(g, (mod - 1) / divs[i], mod) == 1) { ok = false; break; } } if (ok) return g; } } int get_fft_size(int N, int M) { int size_a = 1, size_b = 1; while (size_a < N) size_a <<= 1; while (size_b < M) size_b <<= 1; return max(size_a, size_b) << 1; } constexpr int bsf_constexpr(unsigned int n) { int x = 0; while (!(n & (1 << x))) x++; return x; } int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } template <class mint> struct fft_info{ static constexpr int rank2 = bsf_constexpr(mint::getmod() - 1); std::array<mint, rank2 + 1> root; // root[i]^(2^i) == 1 std::array<mint, rank2 + 1> iroot; // root[i] * iroot[i] == 1 std::array<mint, std::max(0, rank2 - 2 + 1)> rate2; std::array<mint, std::max(0, rank2 - 2 + 1)> irate2; std::array<mint, std::max(0, rank2 - 3 + 1)> rate3; std::array<mint, std::max(0, rank2 - 3 + 1)> irate3; int g; fft_info(){ int MOD=mint::getmod(); g=calc_primitive_root(MOD); root[rank2] = modpow(mint(g),(MOD - 1) >> rank2); iroot[rank2] = modinv(root[rank2]); for (int i = rank2 - 1; i >= 0; i--) { root[i] = root[i + 1] * root[i + 1]; iroot[i] = iroot[i + 1] * iroot[i + 1]; } { mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 2; i++) { rate2[i] = root[i + 2] * prod; irate2[i] = iroot[i + 2] * iprod; prod *= iroot[i + 2]; iprod *= root[i + 2]; } } { mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 3; i++) { rate3[i] = root[i + 3] * prod; irate3[i] = iroot[i + 3] * iprod; prod *= iroot[i + 3]; iprod *= root[i + 3]; } } } }; int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } // number-theoretic transform template <class mint> void trans(std::vector<mint>& a) { int n = int(a.size()); int h = ceil_pow2(n); int MOD=a[0].getmod(); static const fft_info<mint> info; int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed while (len < h) { if (h - len == 1) { int p = 1 << (h - len - 1); mint rot = 1; for (int s = 0; s < (1 << len); s++) { int offset = s << (h - len); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p] * rot; a[i + offset] = l + r; a[i + offset + p] = l - r; } if (s + 1 != (1 << len)) rot *= info.rate2[bsf(~(unsigned int)(s))]; } len++; } else { // 4-base int p = 1 << (h - len - 2); mint rot = 1, imag = info.root[2]; for (int s = 0; s < (1 << len); s++) { mint rot2 = rot * rot; mint rot3 = rot2 * rot; int offset = s << (h - len); for (int i = 0; i < p; i++) { auto mod2 = 1ULL * MOD * MOD; auto a0 = 1ULL * a[i + offset].val; auto a1 = 1ULL * a[i + offset + p].val * rot.val; auto a2 = 1ULL * a[i + offset + 2 * p].val * rot2.val; auto a3 = 1ULL * a[i + offset + 3 * p].val * rot3.val; auto a1na3imag = 1ULL * mint(a1 + mod2 - a3).val * imag.val; auto na2 = mod2 - a2; a[i + offset] = a0 + a2 + a1 + a3; a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3)); a[i + offset + 2 * p] = a0 + na2 + a1na3imag; a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag); } if (s + 1 != (1 << len)) rot *= info.rate3[bsf(~(unsigned int)(s))]; } len += 2; } } } template <class mint> void trans_inv(std::vector<mint>& a) { int n = int(a.size()); int h = ceil_pow2(n); static const fft_info<mint> info; int MOD=a[0].getmod(); int len = h; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed while (len) { if (len == 1) { int p = 1 << (h - len); mint irot = 1; for (int s = 0; s < (1 << (len - 1)); s++) { int offset = s << (h - len + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p]; a[i + offset] = l + r; a[i + offset + p] = (unsigned long long)(MOD + l.val - r.val) * irot.val; ; } if (s + 1 != (1 << (len - 1))) irot *= info.irate2[bsf(~(unsigned int)(s))]; } len--; } else { // 4-base int p = 1 << (h - len); mint irot = 1, iimag = info.iroot[2]; for (int s = 0; s < (1 << (len - 2)); s++) { mint irot2 = irot * irot; mint irot3 = irot2 * irot; int offset = s << (h - len + 2); for (int i = 0; i < p; i++) { auto a0 = 1ULL * a[i + offset + 0 * p].val; auto a1 = 1ULL * a[i + offset + 1 * p].val; auto a2 = 1ULL * a[i + offset + 2 * p].val; auto a3 = 1ULL * a[i + offset + 3 * p].val; auto a2na3iimag = 1ULL * mint((MOD + a2 - a3) * iimag.val).val; a[i + offset] = a0 + a1 + a2 + a3; a[i + offset + 1 * p] = (a0 + (MOD - a1) + a2na3iimag) * irot.val; a[i + offset + 2 * p] = (a0 + a1 + (MOD - a2) + (MOD - a3)) * irot2.val; a[i + offset + 3 * p] = (a0 + (MOD - a1) + (MOD - a2na3iimag)) * irot3.val; } if (s + 1 != (1 << (len - 2))) irot *= info.irate3[bsf(~(unsigned int)(s))]; } len -= 2; } } } // for garner static constexpr int MOD0 = 754974721; static constexpr int MOD1 = 167772161; static constexpr int MOD2 = 469762049; using mint0 = Fp<MOD0>; using mint1 = Fp<MOD1>; using mint2 = Fp<MOD2>; static const mint1 imod0 = 95869806; // modinv(MOD0, MOD1); static const mint2 imod1 = 104391568; // modinv(MOD1, MOD2); static const mint2 imod01 = 187290749; // imod1 / MOD0; // small case (T = mint, long long) template<class T> vector<T> naive_mul (const vector<T> &A, const vector<T> &B) { if (A.empty() || B.empty()) return {}; int N = (int)A.size(), M = (int)B.size(); vector<T> res(N + M - 1); for (int i = 0; i < N; ++i) for (int j = 0; j < M; ++j) res[i + j] += A[i] * B[j]; return res; } // mint template<class mint> vector<mint> mul(vector<mint> A,vector<mint> B) { if (A.empty() || B.empty()) return {}; int n = int(A.size()), m = int(B.size()); if (min(n, m) < 30) return naive_mul(A, B); int MOD = A[0].getmod(); int z = 1 << ceil_pow2(n + m - 1); if (MOD == 998244353) { A.resize(z); trans(A); B.resize(z); trans(B); for (int i = 0; i < z; i++) { A[i] *= B[i]; } trans_inv(A); A.resize(n + m - 1); mint iz = modinv(mint(z)); for (int i = 0; i < n + m - 1; i++) A[i] *= iz; return A; } vector<mint0> a0(z, 0), b0(z, 0); vector<mint1> a1(z, 0), b1(z, 0); vector<mint2> a2(z, 0), b2(z, 0); for (int i = 0; i < n; ++i) a0[i] = A[i].val, a1[i] = A[i].val, a2[i] = A[i].val; for (int i = 0; i < m; ++i) b0[i] = B[i].val, b1[i] = B[i].val, b2[i] = B[i].val; trans(a0), trans(a1), trans(a2), trans(b0), trans(b1), trans(b2); for (int i = 0; i < z; ++i) { a0[i] *= b0[i]; a1[i] *= b1[i]; a2[i] *= b2[i]; } trans_inv(a0), trans_inv(a1), trans_inv(a2); static const mint mod0 = MOD0, mod01 = mod0 * MOD1; mint0 i0=modinv(mint0(z)); mint1 i1=modinv(mint1(z)); mint2 i2=modinv(mint2(z)); vector<mint> res(n + m - 1); for (int i = 0; i < n + m - 1; ++i) { a0[i]*=i0; a1[i]*=i1; a2[i]*=i2; int y0 = a0[i].val; int y1 = (imod0 * (a1[i] - y0)).val; int y2 = (imod01 * (a2[i] - y0) - imod1 * y1).val; res[i] = mod01 * y2 + mod0 * y1 + y0; } return res; } }; // Formal Power Series template <typename mint> struct FPS : vector<mint> { using vector<mint>::vector; /* template<class...Args> FPS(Args...args) : vector<mint>(args...){} */ // constructor FPS(const vector<mint>& r) : vector<mint>(r) {} // core operator inline FPS pre(int siz) const { return FPS(begin(*this), begin(*this) + min((int)this->size(), siz)); } inline FPS rev() const { FPS res = *this; reverse(begin(res), end(res)); return res; } inline FPS& normalize() { while (!this->empty() && this->back() == 0) this->pop_back(); return *this; } // basic operator inline FPS operator - () const noexcept { FPS res = (*this); for (int i = 0; i < (int)res.size(); ++i) res[i] = -res[i]; return res; } inline FPS operator + (const mint& v) const { return FPS(*this) += v; } inline FPS operator + (const FPS& r) const { return FPS(*this) += r; } inline FPS operator - (const mint& v) const { return FPS(*this) -= v; } inline FPS operator - (const FPS& r) const { return FPS(*this) -= r; } inline FPS operator * (const mint& v) const { return FPS(*this) *= v; } inline FPS operator * (const FPS& r) const { return FPS(*this) *= r; } inline FPS operator / (const mint& v) const { return FPS(*this) /= v; } inline FPS operator << (int x) const { return FPS(*this) <<= x; } inline FPS operator >> (int x) const { return FPS(*this) >>= x; } inline FPS& operator += (const mint& v) { if (this->empty()) this->resize(1); (*this)[0] += v; return *this; } inline FPS& operator += (const FPS& r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); ++i) (*this)[i] += r[i]; return this->normalize(); } inline FPS& operator -= (const mint& v) { if (this->empty()) this->resize(1); (*this)[0] -= v; return *this; } inline FPS& operator -= (const FPS& r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); ++i) (*this)[i] -= r[i]; return this->normalize(); } inline FPS& operator *= (const mint& v) { for (int i = 0; i < (int)this->size(); ++i) (*this)[i] *= v; return *this; } inline FPS& operator *= (const FPS& r) { return *this = NTT::mul((*this), r); } inline FPS& operator /= (const mint& v) { assert(v != 0); mint iv = modinv(v); for (int i = 0; i < (int)this->size(); ++i) (*this)[i] *= iv; return *this; } inline FPS& operator <<= (int x) { FPS res(x, 0); res.insert(res.end(), begin(*this), end(*this)); return *this = res; } inline FPS& operator >>= (int x) { FPS res; res.insert(res.end(), begin(*this) + x, end(*this)); return *this = res; } inline mint eval(const mint& v){ mint res = 0; for (int i = (int)this->size()-1; i >= 0; --i) { res *= v; res += (*this)[i]; } return res; } inline friend FPS gcd(const FPS& f, const FPS& g) { if (g.empty()) return f; return gcd(g, f % g); } // advanced operation // df/dx inline friend FPS diff(const FPS& f) { int n = (int)f.size(); FPS res(n-1); for (int i = 1; i < n; ++i) res[i-1] = f[i] * i; return res; } // \int f dx inline friend FPS integral(const FPS& f) { int n = (int)f.size(); FPS res(n+1, 0); for (int i = 0; i < n; ++i) res[i+1] = f[i] / (i+1); return res; } // inv(f), f[0] must not be 0 inline friend FPS inv(const FPS& f, int deg) { assert(f[0] != 0); if (deg < 0) deg = (int)f.size(); FPS res({mint(1) / f[0]}); for (int i = 1; i < deg; i <<= 1) { res = (res + res - res * res * f.pre(i << 1)).pre(i << 1); } res.resize(deg); return res; } inline friend FPS inv(const FPS& f) { return inv(f, f.size()); } // division, r must be normalized (r.back() must not be 0) inline FPS& operator /= (const FPS& r) { const int n=(*this).size(),m=r.size(); if(n<m){ (*this).clear(); return *this; } assert(r.back() != 0); this->normalize(); if (this->size() < r.size()) { this->clear(); return *this; } int need = (int)this->size() - (int)r.size() + 1; *this = ((*this).rev().pre(need) * inv(r.rev(), need)).pre(need).rev(); return *this; } inline FPS& operator %= (const FPS &r) { const int n=(*this).size(),m=r.size(); if(n<m) return (*this); assert(r.back() != 0); this->normalize(); FPS q = (*this) / r; return *this -= q * r; } inline FPS operator / (const FPS& r) const { return FPS(*this) /= r; } inline FPS operator % (const FPS& r) const { return FPS(*this) %= r; } // log(f) = \int f'/f dx, f[0] must be 1 inline friend FPS log(const FPS& f, int deg) { assert(f[0] == 1); FPS res = integral((diff(f) * inv(f, deg)).pre(deg-1)); return res; } inline friend FPS log(const FPS& f) { return log(f, f.size()); } // exp(f), f[0] must be 0 inline friend FPS exp(const FPS& f, int deg) { assert(f[0] == 0); FPS res(1, 1); for (int i = 1; i < deg; i <<= 1) { res = res * (f.pre(i<<1) - log(res, i<<1) + 1).pre(i<<1); } res.resize(deg); return res; } inline friend FPS exp(const FPS& f) { return exp(f, f.size()); } // pow(f) = exp(e * log f) inline friend FPS pow(const FPS& f, long long e, int deg) { long long i = 0; while (i < (int)f.size() && f[i] == 0) ++i; if (i == (int)f.size()) return FPS(deg, 0); if (i * e >= deg) return FPS(deg, 0); mint k = f[i]; FPS res = exp(log((f >> i) / k, deg) * e, deg) * modpow(k, e) << (e * i); res.resize(deg); return res; } inline friend FPS pow(const FPS& f, long long e) { return pow(f, e, f.size()); } // sqrt(f), f[0] must be 1 inline friend FPS sqrt_base(const FPS& f, int deg) { assert(f[0] == 1); mint inv2 = mint(1) / 2; FPS res(1, 1); for (int i = 1; i < deg; i <<= 1) { res = (res + f.pre(i << 1) * inv(res, i << 1)).pre(i << 1); for (mint& x : res) x *= inv2; } res.resize(deg); return res; } inline friend FPS sqrt_base(const FPS& f) { return sqrt_base(f, f.size()); } FPS taylor_shift(mint c) const { int n = (int) this->size(); vector<mint> fact(n), rfact(n); fact[0] = rfact[0] = mint(1); for(int i = 1; i < n; i++) fact[i] = fact[i - 1] * mint(i); rfact[n - 1] = mint(1) / fact[n - 1]; for(int i = n - 1; i > 1; i--) rfact[i - 1] = rfact[i] * mint(i); FPS p(*this); for(int i = 0; i < n; i++) p[i] *= fact[i]; p = p.rev(); FPS bs(n, mint(1)); for(int i = 1; i < n; i++) bs[i] = bs[i - 1] * c * rfact[i] * fact[i - 1]; p = (p * bs).pre(n); p = p.rev(); for(int i = 0; i < n; i++) p[i] *= rfact[i]; return p; } }; template <typename mint> FPS<mint> product(vector<FPS<mint>> a){ int siz=1; while(siz<int(a.size())){ siz<<=1; } vector<FPS<mint>> res(siz*2-1,{1}); for(int i=0;i<int(a.size());++i){ res[i+siz-1]=a[i]; } for(int i=siz-2;i>=0;--i){ res[i]=res[2*i+1]*res[2*i+2]; } return res[0]; } template<typename mint> FPS<mint> inv_sum(vector<FPS<mint>> f){ int siz=1; while(siz<int(f.size())){ siz<<=1; } vector<FPS<mint>> mol(siz*2-1),dem(siz*2-1,{1}); for(size_t i=0;i<f.size();++i){ mol[i+siz-1]={1}; dem[i+siz-1]=f[i]; } for(int i=siz-2;i>=0;--i){ dem[i]=dem[2*i+1]*dem[2*i+2]; mol[i]=mol[2*i+1]*dem[2*i+2]+mol[2*i+2]*dem[2*i+1]; } mol[0]*=inv(dem[0]); return mol[0]; } template <typename mint> FPS<mint> rev(FPS<mint> p) { reverse(p.begin(),p.end()); return p; } template <typename mint> FPS<mint> RSZ(FPS<mint> p, int x) { p.resize(x); return p; } template<typename mint> struct subproduct_tree{ using poly=FPS<mint>; vector<poly> tree; int n,siz; subproduct_tree(const vector<mint> &x){ n=1; siz=sz(x); while(n<siz) n*=2;; tree.resize(2*n,{mint(1)}); for(int i=0;i<siz;i++) tree[i+n]={-x[i],mint(1)}; for(int i=n-1;i>0;i--) tree[i]=tree[2*i]*tree[2*i+1]; } vector<mint> multieval(const poly &f){ vector<poly> remainder(2*n); remainder[1]=f%tree[1]; for(int i=1;i<n;i++){ remainder[2*i]=remainder[i]%tree[2*i]; remainder[2*i+1]=remainder[i]%tree[2*i+1]; } vector<mint> ret(siz); for(int i=0;i<siz;i++){ if(remainder[i+n].empty()) ret[i]=0; else ret[i]=remainder[i+n][0]; } return ret; } poly interpolate(const vector<mint> &y){ poly g=diff(tree[1]); vector<mint> evaled=multieval(g); vector<poly> mol(2*n),dem(2*n,{1}); for(int i=0;i<siz;++i){ mol[i+n]={y[i]}; dem[i+n]=tree[i+n]*evaled[i]; } for(int i=n-1;i>0;--i){ dem[i]=dem[2*i]*dem[2*i+1]; mol[i]=mol[2*i]*dem[2*i+1]+mol[2*i+1]*dem[2*i]; } mol[1]*=inv(dem[1]); return RSZ(tree[1]*mol[1],siz); } }; template <typename mint> vector<mint> multieval(const FPS<mint> &f,const vector<mint> &x){ subproduct_tree<mint> tree(x); return tree.multieval(f); } template <typename mint> FPS<mint> interpolate(const vector<mint> &x,const vector<mint> &y){ assert(sz(x)==sz(y)); if(sz(x)==1) return {y[0]}; subproduct_tree<mint> tree(x); return tree.interpolate(y); } using mint=Fp<998244353>; int main(){ int n,siz=1; cin>>n; while(siz<n) siz*=2; vector<mint> mol(2*siz),dem(2*siz,1); FOR(i,n){ mint a,b; cin>>a>>b; mol[i+n]=a; dem[i+n]=b; } for(int i=siz-1;i>0;--i){ dem[i]=dem[2*i]*dem[2*i+1]; mol[i]=mol[2*i]*dem[2*i+1]+mol[2*i+1]*dem[2*i]; ll g=gcd(mol[i].val,dem[i].val); mol[i].val/=g; dem[i].val/=g; } cout<<mol[1]<<" "<<dem[1]<<endl; }