結果
| 問題 |
No.1932 動く点 P / Moving Point P
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2022-05-06 23:27:48 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2,419 ms / 6,000 ms |
| コード長 | 11,479 bytes |
| コンパイル時間 | 3,118 ms |
| コンパイル使用メモリ | 215,452 KB |
| 最終ジャッジ日時 | 2025-01-29 04:11:53 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 11 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < n; i++)
#define rep2(i, x, n) for (int i = x; i <= n; i++)
#define rep3(i, x, n) for (int i = x; i >= n; i--)
#define each(e, v) for (auto &e : v)
#define pb push_back
#define eb emplace_back
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;
template <typename T>
bool chmax(T &x, const T &y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
bool chmin(T &x, const T &y) {
return (x > y) ? (x = y, true) : false;
}
template <typename T>
int flg(T x, int i) {
return (x >> i) & 1;
}
template <typename T>
void print(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
if (v.empty()) cout << '\n';
}
template <typename T>
void printn(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}
template <typename T>
int lb(const vector<T> &v, T x) {
return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, T x) {
return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
void rearrange(vector<T> &v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
int n = v.size();
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
return ret;
}
template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first + q.first, p.second + q.second);
}
template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first - q.first, p.second - q.second);
}
template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
S a;
T b;
is >> a >> b;
p = make_pair(a, b);
return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
return os << p.first << ' ' << p.second;
}
struct io_setup {
io_setup() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout << fixed << setprecision(15);
}
} io_setup;
const int inf = (1 << 30) - 1;
const ll INF = (1LL << 60) - 1;
const int MOD = 1000000007;
// const int MOD = 998244353;
template <typename Monoid>
struct Segment_Tree {
using F = function<Monoid(Monoid, Monoid)>;
int n;
vector<Monoid> seg;
const F f;
const Monoid e1;
// f(f(a,b),c) = f(a,f(b,c)), f(e1,a) = f(a,e1) = a
Segment_Tree(const vector<Monoid> &v, const F &f, const Monoid &e1) : f(f), e1(e1) {
int m = v.size();
n = 1;
while (n < m) n <<= 1;
seg.assign(2 * n, e1);
copy(begin(v), end(v), seg.begin() + n);
for (int i = n - 1; i > 0; i--) seg[i] = f(seg[2 * i], seg[2 * i + 1]);
}
Segment_Tree(int m, const Monoid &x, const F &f, const Monoid &e1) : f(f), e1(e1) {
n = 1;
while (n < m) n <<= 1;
seg.assign(2 * n, e1);
vector<Monoid> v(m, x);
copy(begin(v), end(v), begin(seg) + n);
for (int i = n - 1; i > 0; i--) seg[i] = f(seg[2 * i], seg[2 * i + 1]);
}
void change(int i, const Monoid &x, bool update = true) {
if (update) {
seg[i + n] = x;
} else {
seg[i + n] = f(seg[i + n], x);
}
i += n;
while (i >>= 1) seg[i] = f(seg[2 * i], seg[2 * i + 1]);
}
Monoid query(int l, int r) const {
Monoid L = e1, R = e1;
l += n, r += n;
while (l < r) {
if (l & 1) L = f(L, seg[l++]);
if (r & 1) R = f(seg[--r], R);
l >>= 1, r >>= 1;
}
return f(L, R);
}
Monoid operator[](int i) const { return seg[n + i]; }
template <typename C>
int find_subtree(int i, const C &check, const Monoid &x, Monoid &M, int type) const {
while (i < n) {
Monoid nxt = type ? f(seg[2 * i + type], M) : f(M, seg[2 * i + type]);
if (check(nxt, x)) {
i = 2 * i + type;
} else {
M = nxt;
i = 2 * i + (type ^ 1);
}
}
return i - n;
}
template <typename C>
int find_first(int l, const C &check, const Monoid &x) const { // check((区間 [l,r] での演算結果), x) を満たす最小の r
Monoid L = e1;
int a = l + n, b = n + n;
while (a < b) {
if (a & 1) {
Monoid nxt = f(L, seg[a]);
if (check(nxt, x)) return find_subtree(a, check, x, L, 0);
L = nxt, a++;
}
a >>= 1, b >>= 1;
}
return n;
}
template <typename C>
int find_last(int r, const C &check, const Monoid &x) const { // check((区間 [l,r) での演算結果), x) を満たす最大の l
Monoid R = e1;
int a = n, b = r + n;
while (a < b) {
if ((b & 1) || a == 1) {
Monoid nxt = f(seg[--b], R);
if (check(nxt, x)) return find_subtree(b, check, x, R, 1);
R = nxt;
}
a >>= 1, b >>= 1;
}
return -1;
}
};
template <typename T>
struct Matrix {
vector<vector<T>> A;
Matrix(int m, int n) : A(m, vector<T>(n, 0)) {}
int height() const { return A.size(); }
int width() const { return A.front().size(); }
inline const vector<T> &operator[](int k) const { return A[k]; }
inline vector<T> &operator[](int k) { return A[k]; }
static Matrix I(int l) {
Matrix ret(l, l);
for (int i = 0; i < l; i++) ret[i][i] = 1;
return ret;
}
Matrix &operator*=(const Matrix &B) {
int m = height(), n = width(), p = B.width();
assert(n == B.height());
Matrix ret(m, p);
for (int i = 0; i < m; i++) {
for (int k = 0; k < n; k++) {
for (int j = 0; j < p; j++) ret[i][j] += A[i][k] * B[k][j];
}
}
swap(A, ret.A);
return *this;
}
Matrix operator*(const Matrix &B) const { return Matrix(*this) *= B; }
Matrix pow(long long k) const {
int m = height(), n = width();
assert(m == n);
Matrix now = *this, ret = I(n);
for (; k > 0; k >>= 1, now *= now) {
if (k & 1) ret *= now;
}
return ret;
}
bool eq(const T &a, const T &b) const {
return a == b;
// return abs(a-b) <= EPS;
}
pair<int, T> row_reduction(vector<T> &b) { // 行基本変形を用いて簡約化を行い、(rank, det) の組を返す
int m = height(), n = width(), check = 0, rank = 0;
T det = 1;
assert(b.size() == m);
for (int j = 0; j < n; j++) {
int pivot = check;
for (int i = check; i < m; i++) {
if (A[i][j] != 0) pivot = i;
// if(abs(A[i][j]) > abs(A[pivot][j])) pivot = i; // T が小数の場合はこちら
}
if (check != pivot) det *= T(-1);
swap(A[check], A[pivot]), swap(b[check], b[pivot]);
if (eq(A[check][j], T(0))) {
det = T(0);
continue;
}
rank++;
det *= A[check][j];
T r = T(1) / A[check][j];
for (int k = j + 1; k < n; k++) A[check][k] *= r;
b[check] *= r;
A[check][j] = T(1);
for (int i = 0; i < m; i++) {
if (i == check) continue;
if (!eq(A[i][j], 0)) {
for (int k = j + 1; k < n; k++) A[i][k] -= A[i][j] * A[check][k];
b[i] -= A[i][j] * b[check];
}
A[i][j] = T(0);
}
if (++check == m) break;
}
return make_pair(rank, det);
}
pair<int, T> row_reduction() {
vector<T> b(height(), T(0));
return row_reduction(b);
}
Matrix inverse() { // 行基本変形によって正方行列の逆行列を求める
if (height() != width()) return Matrix(0, 0);
int n = height();
Matrix ret = I(n);
for (int j = 0; j < n; j++) {
int pivot = j;
for (int i = j; i < n; i++) {
if (A[i][j] != 0) pivot = i;
// if(abs(A[i][j]) > abs(A[pivot][j])) pivot = i; // T が小数の場合はこちら
}
swap(A[j], A[pivot]), swap(ret[j], ret[pivot]);
if (eq(A[j][j], T(0))) return Matrix(0, 0);
T r = T(1) / A[j][j];
for (int k = j + 1; k < n; k++) A[j][k] *= r;
for (int k = 0; k < n; k++) ret[j][k] *= r;
A[j][j] = T(1);
for (int i = 0; i < n; i++) {
if (i == j) continue;
if (!eq(A[i][j], T(0))) {
for (int k = j + 1; k < n; k++) A[i][k] -= A[i][j] * A[j][k];
for (int k = 0; k < n; k++) ret[i][k] -= A[i][j] * ret[j][k];
}
A[i][j] = T(0);
}
}
return ret;
}
vector<vector<T>> Gausiann_elimination(vector<T> b) { // Ax = b の解の 1 つと解空間の基底の組を返す
int m = height(), n = width();
row_reduction(b);
vector<vector<T>> ret;
vector<int> p(m, n);
vector<bool> is_zero(n, true);
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (!eq(A[i][j], T(0))) {
p[i] = j;
break;
}
}
if (p[i] < n)
is_zero[p[i]] = false;
else if (!eq(b[i], T(0)))
return {};
}
vector<T> x(n, T(0));
for (int i = 0; i < m; i++) {
if (p[i] < n) x[p[i]] = b[i];
}
ret.push_back(x);
for (int j = 0; j < n; j++) {
if (!is_zero[j]) continue;
x[j] = T(1);
for (int i = 0; i < m; i++) {
if (p[i] < n) x[p[i]] = -A[i][j];
}
ret.push_back(x), x[j] = T(0);
}
return ret;
}
};
using mat = Matrix<double>;
int main() {
int N;
cin >> N;
auto f = [](mat A, mat B) { return B * A; };
mat I = mat::I(3);
vector<mat> v;
double pi = acos(-1.0);
rep(i, N) {
double p, q, r;
cin >> p >> q >> r;
r *= pi / 180.0;
double co = cos(r), si = sin(r);
mat A(3, 3);
A[0][0] = co, A[0][1] = -si, A[0][2] = p - p * co + q * si;
A[1][0] = si, A[1][1] = co, A[1][2] = q - p * si - q * co;
A[2][2] = 1.0;
v.eb(A);
}
Segment_Tree<mat> seg(v, f, I);
int Q;
cin >> Q;
while (Q--) {
int L, R;
cin >> L >> R;
L--;
double a, b;
cin >> a >> b;
mat A = seg.query(L, R);
mat x(3, 1);
x[0][0] = a, x[1][0] = b, x[2][0] = 1.0;
x = A * x;
cout << x[0][0] << ' ' << x[1][0] << '\n';
}
}