結果

問題 No.1932 動く点 P / Moving Point P
ユーザー tokusakuraitokusakurai
提出日時 2022-05-06 23:27:48
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2,059 ms / 6,000 ms
コード長 11,479 bytes
コンパイル時間 2,744 ms
コンパイル使用メモリ 223,916 KB
実行使用メモリ 74,656 KB
最終ジャッジ日時 2024-07-06 02:33:37
合計ジャッジ時間 31,711 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 588 ms
69,932 KB
testcase_02 AC 337 ms
68,868 KB
testcase_03 AC 935 ms
8,320 KB
testcase_04 AC 1,189 ms
21,224 KB
testcase_05 AC 995 ms
21,476 KB
testcase_06 AC 158 ms
36,968 KB
testcase_07 AC 2,059 ms
74,224 KB
testcase_08 AC 2,053 ms
74,656 KB
testcase_09 AC 1,245 ms
74,336 KB
testcase_10 AC 1,220 ms
74,460 KB
testcase_11 AC 1,219 ms
74,332 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < n; i++)
#define rep2(i, x, n) for (int i = x; i <= n; i++)
#define rep3(i, x, n) for (int i = x; i >= n; i--)
#define each(e, v) for (auto &e : v)
#define pb push_back
#define eb emplace_back
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;

template <typename T>
bool chmax(T &x, const T &y) {
    return (x < y) ? (x = y, true) : false;
}

template <typename T>
bool chmin(T &x, const T &y) {
    return (x > y) ? (x = y, true) : false;
}

template <typename T>
int flg(T x, int i) {
    return (x >> i) & 1;
}

template <typename T>
void print(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
    if (v.empty()) cout << '\n';
}

template <typename T>
void printn(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}

template <typename T>
int lb(const vector<T> &v, T x) {
    return lower_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
int ub(const vector<T> &v, T x) {
    return upper_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
void rearrange(vector<T> &v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
    int n = v.size();
    vector<int> ret(n);
    iota(begin(ret), end(ret), 0);
    sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
    return ret;
}

template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first + q.first, p.second + q.second);
}

template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first - q.first, p.second - q.second);
}

template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
    S a;
    T b;
    is >> a >> b;
    p = make_pair(a, b);
    return is;
}

template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
    return os << p.first << ' ' << p.second;
}

struct io_setup {
    io_setup() {
        ios_base::sync_with_stdio(false);
        cin.tie(NULL);
        cout << fixed << setprecision(15);
    }
} io_setup;

const int inf = (1 << 30) - 1;
const ll INF = (1LL << 60) - 1;
const int MOD = 1000000007;
// const int MOD = 998244353;

template <typename Monoid>
struct Segment_Tree {
    using F = function<Monoid(Monoid, Monoid)>;
    int n;
    vector<Monoid> seg;
    const F f;
    const Monoid e1;

    // f(f(a,b),c) = f(a,f(b,c)), f(e1,a) = f(a,e1) = a

    Segment_Tree(const vector<Monoid> &v, const F &f, const Monoid &e1) : f(f), e1(e1) {
        int m = v.size();
        n = 1;
        while (n < m) n <<= 1;
        seg.assign(2 * n, e1);
        copy(begin(v), end(v), seg.begin() + n);
        for (int i = n - 1; i > 0; i--) seg[i] = f(seg[2 * i], seg[2 * i + 1]);
    }

    Segment_Tree(int m, const Monoid &x, const F &f, const Monoid &e1) : f(f), e1(e1) {
        n = 1;
        while (n < m) n <<= 1;
        seg.assign(2 * n, e1);
        vector<Monoid> v(m, x);
        copy(begin(v), end(v), begin(seg) + n);
        for (int i = n - 1; i > 0; i--) seg[i] = f(seg[2 * i], seg[2 * i + 1]);
    }

    void change(int i, const Monoid &x, bool update = true) {
        if (update) {
            seg[i + n] = x;
        } else {
            seg[i + n] = f(seg[i + n], x);
        }
        i += n;
        while (i >>= 1) seg[i] = f(seg[2 * i], seg[2 * i + 1]);
    }

    Monoid query(int l, int r) const {
        Monoid L = e1, R = e1;
        l += n, r += n;
        while (l < r) {
            if (l & 1) L = f(L, seg[l++]);
            if (r & 1) R = f(seg[--r], R);
            l >>= 1, r >>= 1;
        }
        return f(L, R);
    }

    Monoid operator[](int i) const { return seg[n + i]; }

    template <typename C>
    int find_subtree(int i, const C &check, const Monoid &x, Monoid &M, int type) const {
        while (i < n) {
            Monoid nxt = type ? f(seg[2 * i + type], M) : f(M, seg[2 * i + type]);
            if (check(nxt, x)) {
                i = 2 * i + type;
            } else {
                M = nxt;
                i = 2 * i + (type ^ 1);
            }
        }
        return i - n;
    }

    template <typename C>
    int find_first(int l, const C &check, const Monoid &x) const { // check((区間 [l,r] での演算結果), x) を満たす最小の r
        Monoid L = e1;
        int a = l + n, b = n + n;
        while (a < b) {
            if (a & 1) {
                Monoid nxt = f(L, seg[a]);
                if (check(nxt, x)) return find_subtree(a, check, x, L, 0);
                L = nxt, a++;
            }
            a >>= 1, b >>= 1;
        }
        return n;
    }

    template <typename C>
    int find_last(int r, const C &check, const Monoid &x) const { // check((区間 [l,r) での演算結果), x) を満たす最大の l
        Monoid R = e1;
        int a = n, b = r + n;
        while (a < b) {
            if ((b & 1) || a == 1) {
                Monoid nxt = f(seg[--b], R);
                if (check(nxt, x)) return find_subtree(b, check, x, R, 1);
                R = nxt;
            }
            a >>= 1, b >>= 1;
        }
        return -1;
    }
};

template <typename T>
struct Matrix {
    vector<vector<T>> A;

    Matrix(int m, int n) : A(m, vector<T>(n, 0)) {}

    int height() const { return A.size(); }

    int width() const { return A.front().size(); }

    inline const vector<T> &operator[](int k) const { return A[k]; }

    inline vector<T> &operator[](int k) { return A[k]; }

    static Matrix I(int l) {
        Matrix ret(l, l);
        for (int i = 0; i < l; i++) ret[i][i] = 1;
        return ret;
    }

    Matrix &operator*=(const Matrix &B) {
        int m = height(), n = width(), p = B.width();
        assert(n == B.height());
        Matrix ret(m, p);
        for (int i = 0; i < m; i++) {
            for (int k = 0; k < n; k++) {
                for (int j = 0; j < p; j++) ret[i][j] += A[i][k] * B[k][j];
            }
        }
        swap(A, ret.A);
        return *this;
    }

    Matrix operator*(const Matrix &B) const { return Matrix(*this) *= B; }

    Matrix pow(long long k) const {
        int m = height(), n = width();
        assert(m == n);
        Matrix now = *this, ret = I(n);
        for (; k > 0; k >>= 1, now *= now) {
            if (k & 1) ret *= now;
        }
        return ret;
    }

    bool eq(const T &a, const T &b) const {
        return a == b;
        // return abs(a-b) <= EPS;
    }

    pair<int, T> row_reduction(vector<T> &b) { // 行基本変形を用いて簡約化を行い、(rank, det) の組を返す
        int m = height(), n = width(), check = 0, rank = 0;
        T det = 1;
        assert(b.size() == m);
        for (int j = 0; j < n; j++) {
            int pivot = check;
            for (int i = check; i < m; i++) {
                if (A[i][j] != 0) pivot = i;
                // if(abs(A[i][j]) > abs(A[pivot][j])) pivot = i; // T が小数の場合はこちら
            }
            if (check != pivot) det *= T(-1);
            swap(A[check], A[pivot]), swap(b[check], b[pivot]);
            if (eq(A[check][j], T(0))) {
                det = T(0);
                continue;
            }
            rank++;
            det *= A[check][j];
            T r = T(1) / A[check][j];
            for (int k = j + 1; k < n; k++) A[check][k] *= r;
            b[check] *= r;
            A[check][j] = T(1);
            for (int i = 0; i < m; i++) {
                if (i == check) continue;
                if (!eq(A[i][j], 0)) {
                    for (int k = j + 1; k < n; k++) A[i][k] -= A[i][j] * A[check][k];
                    b[i] -= A[i][j] * b[check];
                }
                A[i][j] = T(0);
            }
            if (++check == m) break;
        }
        return make_pair(rank, det);
    }

    pair<int, T> row_reduction() {
        vector<T> b(height(), T(0));
        return row_reduction(b);
    }

    Matrix inverse() { // 行基本変形によって正方行列の逆行列を求める
        if (height() != width()) return Matrix(0, 0);
        int n = height();
        Matrix ret = I(n);
        for (int j = 0; j < n; j++) {
            int pivot = j;
            for (int i = j; i < n; i++) {
                if (A[i][j] != 0) pivot = i;
                // if(abs(A[i][j]) > abs(A[pivot][j])) pivot = i; // T が小数の場合はこちら
            }
            swap(A[j], A[pivot]), swap(ret[j], ret[pivot]);
            if (eq(A[j][j], T(0))) return Matrix(0, 0);
            T r = T(1) / A[j][j];
            for (int k = j + 1; k < n; k++) A[j][k] *= r;
            for (int k = 0; k < n; k++) ret[j][k] *= r;
            A[j][j] = T(1);
            for (int i = 0; i < n; i++) {
                if (i == j) continue;
                if (!eq(A[i][j], T(0))) {
                    for (int k = j + 1; k < n; k++) A[i][k] -= A[i][j] * A[j][k];
                    for (int k = 0; k < n; k++) ret[i][k] -= A[i][j] * ret[j][k];
                }
                A[i][j] = T(0);
            }
        }
        return ret;
    }

    vector<vector<T>> Gausiann_elimination(vector<T> b) { // Ax = b の解の 1 つと解空間の基底の組を返す
        int m = height(), n = width();
        row_reduction(b);
        vector<vector<T>> ret;
        vector<int> p(m, n);
        vector<bool> is_zero(n, true);
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (!eq(A[i][j], T(0))) {
                    p[i] = j;
                    break;
                }
            }
            if (p[i] < n)
                is_zero[p[i]] = false;
            else if (!eq(b[i], T(0)))
                return {};
        }
        vector<T> x(n, T(0));
        for (int i = 0; i < m; i++) {
            if (p[i] < n) x[p[i]] = b[i];
        }
        ret.push_back(x);
        for (int j = 0; j < n; j++) {
            if (!is_zero[j]) continue;
            x[j] = T(1);
            for (int i = 0; i < m; i++) {
                if (p[i] < n) x[p[i]] = -A[i][j];
            }
            ret.push_back(x), x[j] = T(0);
        }
        return ret;
    }
};

using mat = Matrix<double>;

int main() {
    int N;
    cin >> N;

    auto f = [](mat A, mat B) { return B * A; };
    mat I = mat::I(3);

    vector<mat> v;
    double pi = acos(-1.0);

    rep(i, N) {
        double p, q, r;
        cin >> p >> q >> r;
        r *= pi / 180.0;
        double co = cos(r), si = sin(r);
        mat A(3, 3);
        A[0][0] = co, A[0][1] = -si, A[0][2] = p - p * co + q * si;
        A[1][0] = si, A[1][1] = co, A[1][2] = q - p * si - q * co;
        A[2][2] = 1.0;
        v.eb(A);
    }

    Segment_Tree<mat> seg(v, f, I);

    int Q;
    cin >> Q;

    while (Q--) {
        int L, R;
        cin >> L >> R;
        L--;
        double a, b;
        cin >> a >> b;

        mat A = seg.query(L, R);
        mat x(3, 1);
        x[0][0] = a, x[1][0] = b, x[2][0] = 1.0;

        x = A * x;
        cout << x[0][0] << ' ' << x[1][0] << '\n';
    }
}
0