結果
問題 | No.1932 動く点 P / Moving Point P |
ユーザー | tokusakurai |
提出日時 | 2022-05-06 23:27:48 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2,059 ms / 6,000 ms |
コード長 | 11,479 bytes |
コンパイル時間 | 2,744 ms |
コンパイル使用メモリ | 223,916 KB |
実行使用メモリ | 74,656 KB |
最終ジャッジ日時 | 2024-07-06 02:33:37 |
合計ジャッジ時間 | 31,711 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 588 ms
69,932 KB |
testcase_02 | AC | 337 ms
68,868 KB |
testcase_03 | AC | 935 ms
8,320 KB |
testcase_04 | AC | 1,189 ms
21,224 KB |
testcase_05 | AC | 995 ms
21,476 KB |
testcase_06 | AC | 158 ms
36,968 KB |
testcase_07 | AC | 2,059 ms
74,224 KB |
testcase_08 | AC | 2,053 ms
74,656 KB |
testcase_09 | AC | 1,245 ms
74,336 KB |
testcase_10 | AC | 1,220 ms
74,460 KB |
testcase_11 | AC | 1,219 ms
74,332 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define rep(i, n) for (int i = 0; i < n; i++) #define rep2(i, x, n) for (int i = x; i <= n; i++) #define rep3(i, x, n) for (int i = x; i >= n; i--) #define each(e, v) for (auto &e : v) #define pb push_back #define eb emplace_back #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define sz(x) (int)x.size() using ll = long long; using pii = pair<int, int>; using pil = pair<int, ll>; using pli = pair<ll, int>; using pll = pair<ll, ll>; template <typename T> bool chmax(T &x, const T &y) { return (x < y) ? (x = y, true) : false; } template <typename T> bool chmin(T &x, const T &y) { return (x > y) ? (x = y, true) : false; } template <typename T> int flg(T x, int i) { return (x >> i) & 1; } template <typename T> void print(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } template <typename T> void printn(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << '\n'; } template <typename T> int lb(const vector<T> &v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template <typename T> int ub(const vector<T> &v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template <typename T> void rearrange(vector<T> &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } template <typename T> vector<int> id_sort(const vector<T> &v, bool greater = false) { int n = v.size(); vector<int> ret(n); iota(begin(ret), end(ret), 0); sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; }); return ret; } template <typename S, typename T> pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first + q.first, p.second + q.second); } template <typename S, typename T> pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first - q.first, p.second - q.second); } template <typename S, typename T> istream &operator>>(istream &is, pair<S, T> &p) { S a; T b; is >> a >> b; p = make_pair(a, b); return is; } template <typename S, typename T> ostream &operator<<(ostream &os, const pair<S, T> &p) { return os << p.first << ' ' << p.second; } struct io_setup { io_setup() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout << fixed << setprecision(15); } } io_setup; const int inf = (1 << 30) - 1; const ll INF = (1LL << 60) - 1; const int MOD = 1000000007; // const int MOD = 998244353; template <typename Monoid> struct Segment_Tree { using F = function<Monoid(Monoid, Monoid)>; int n; vector<Monoid> seg; const F f; const Monoid e1; // f(f(a,b),c) = f(a,f(b,c)), f(e1,a) = f(a,e1) = a Segment_Tree(const vector<Monoid> &v, const F &f, const Monoid &e1) : f(f), e1(e1) { int m = v.size(); n = 1; while (n < m) n <<= 1; seg.assign(2 * n, e1); copy(begin(v), end(v), seg.begin() + n); for (int i = n - 1; i > 0; i--) seg[i] = f(seg[2 * i], seg[2 * i + 1]); } Segment_Tree(int m, const Monoid &x, const F &f, const Monoid &e1) : f(f), e1(e1) { n = 1; while (n < m) n <<= 1; seg.assign(2 * n, e1); vector<Monoid> v(m, x); copy(begin(v), end(v), begin(seg) + n); for (int i = n - 1; i > 0; i--) seg[i] = f(seg[2 * i], seg[2 * i + 1]); } void change(int i, const Monoid &x, bool update = true) { if (update) { seg[i + n] = x; } else { seg[i + n] = f(seg[i + n], x); } i += n; while (i >>= 1) seg[i] = f(seg[2 * i], seg[2 * i + 1]); } Monoid query(int l, int r) const { Monoid L = e1, R = e1; l += n, r += n; while (l < r) { if (l & 1) L = f(L, seg[l++]); if (r & 1) R = f(seg[--r], R); l >>= 1, r >>= 1; } return f(L, R); } Monoid operator[](int i) const { return seg[n + i]; } template <typename C> int find_subtree(int i, const C &check, const Monoid &x, Monoid &M, int type) const { while (i < n) { Monoid nxt = type ? f(seg[2 * i + type], M) : f(M, seg[2 * i + type]); if (check(nxt, x)) { i = 2 * i + type; } else { M = nxt; i = 2 * i + (type ^ 1); } } return i - n; } template <typename C> int find_first(int l, const C &check, const Monoid &x) const { // check((区間 [l,r] での演算結果), x) を満たす最小の r Monoid L = e1; int a = l + n, b = n + n; while (a < b) { if (a & 1) { Monoid nxt = f(L, seg[a]); if (check(nxt, x)) return find_subtree(a, check, x, L, 0); L = nxt, a++; } a >>= 1, b >>= 1; } return n; } template <typename C> int find_last(int r, const C &check, const Monoid &x) const { // check((区間 [l,r) での演算結果), x) を満たす最大の l Monoid R = e1; int a = n, b = r + n; while (a < b) { if ((b & 1) || a == 1) { Monoid nxt = f(seg[--b], R); if (check(nxt, x)) return find_subtree(b, check, x, R, 1); R = nxt; } a >>= 1, b >>= 1; } return -1; } }; template <typename T> struct Matrix { vector<vector<T>> A; Matrix(int m, int n) : A(m, vector<T>(n, 0)) {} int height() const { return A.size(); } int width() const { return A.front().size(); } inline const vector<T> &operator[](int k) const { return A[k]; } inline vector<T> &operator[](int k) { return A[k]; } static Matrix I(int l) { Matrix ret(l, l); for (int i = 0; i < l; i++) ret[i][i] = 1; return ret; } Matrix &operator*=(const Matrix &B) { int m = height(), n = width(), p = B.width(); assert(n == B.height()); Matrix ret(m, p); for (int i = 0; i < m; i++) { for (int k = 0; k < n; k++) { for (int j = 0; j < p; j++) ret[i][j] += A[i][k] * B[k][j]; } } swap(A, ret.A); return *this; } Matrix operator*(const Matrix &B) const { return Matrix(*this) *= B; } Matrix pow(long long k) const { int m = height(), n = width(); assert(m == n); Matrix now = *this, ret = I(n); for (; k > 0; k >>= 1, now *= now) { if (k & 1) ret *= now; } return ret; } bool eq(const T &a, const T &b) const { return a == b; // return abs(a-b) <= EPS; } pair<int, T> row_reduction(vector<T> &b) { // 行基本変形を用いて簡約化を行い、(rank, det) の組を返す int m = height(), n = width(), check = 0, rank = 0; T det = 1; assert(b.size() == m); for (int j = 0; j < n; j++) { int pivot = check; for (int i = check; i < m; i++) { if (A[i][j] != 0) pivot = i; // if(abs(A[i][j]) > abs(A[pivot][j])) pivot = i; // T が小数の場合はこちら } if (check != pivot) det *= T(-1); swap(A[check], A[pivot]), swap(b[check], b[pivot]); if (eq(A[check][j], T(0))) { det = T(0); continue; } rank++; det *= A[check][j]; T r = T(1) / A[check][j]; for (int k = j + 1; k < n; k++) A[check][k] *= r; b[check] *= r; A[check][j] = T(1); for (int i = 0; i < m; i++) { if (i == check) continue; if (!eq(A[i][j], 0)) { for (int k = j + 1; k < n; k++) A[i][k] -= A[i][j] * A[check][k]; b[i] -= A[i][j] * b[check]; } A[i][j] = T(0); } if (++check == m) break; } return make_pair(rank, det); } pair<int, T> row_reduction() { vector<T> b(height(), T(0)); return row_reduction(b); } Matrix inverse() { // 行基本変形によって正方行列の逆行列を求める if (height() != width()) return Matrix(0, 0); int n = height(); Matrix ret = I(n); for (int j = 0; j < n; j++) { int pivot = j; for (int i = j; i < n; i++) { if (A[i][j] != 0) pivot = i; // if(abs(A[i][j]) > abs(A[pivot][j])) pivot = i; // T が小数の場合はこちら } swap(A[j], A[pivot]), swap(ret[j], ret[pivot]); if (eq(A[j][j], T(0))) return Matrix(0, 0); T r = T(1) / A[j][j]; for (int k = j + 1; k < n; k++) A[j][k] *= r; for (int k = 0; k < n; k++) ret[j][k] *= r; A[j][j] = T(1); for (int i = 0; i < n; i++) { if (i == j) continue; if (!eq(A[i][j], T(0))) { for (int k = j + 1; k < n; k++) A[i][k] -= A[i][j] * A[j][k]; for (int k = 0; k < n; k++) ret[i][k] -= A[i][j] * ret[j][k]; } A[i][j] = T(0); } } return ret; } vector<vector<T>> Gausiann_elimination(vector<T> b) { // Ax = b の解の 1 つと解空間の基底の組を返す int m = height(), n = width(); row_reduction(b); vector<vector<T>> ret; vector<int> p(m, n); vector<bool> is_zero(n, true); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (!eq(A[i][j], T(0))) { p[i] = j; break; } } if (p[i] < n) is_zero[p[i]] = false; else if (!eq(b[i], T(0))) return {}; } vector<T> x(n, T(0)); for (int i = 0; i < m; i++) { if (p[i] < n) x[p[i]] = b[i]; } ret.push_back(x); for (int j = 0; j < n; j++) { if (!is_zero[j]) continue; x[j] = T(1); for (int i = 0; i < m; i++) { if (p[i] < n) x[p[i]] = -A[i][j]; } ret.push_back(x), x[j] = T(0); } return ret; } }; using mat = Matrix<double>; int main() { int N; cin >> N; auto f = [](mat A, mat B) { return B * A; }; mat I = mat::I(3); vector<mat> v; double pi = acos(-1.0); rep(i, N) { double p, q, r; cin >> p >> q >> r; r *= pi / 180.0; double co = cos(r), si = sin(r); mat A(3, 3); A[0][0] = co, A[0][1] = -si, A[0][2] = p - p * co + q * si; A[1][0] = si, A[1][1] = co, A[1][2] = q - p * si - q * co; A[2][2] = 1.0; v.eb(A); } Segment_Tree<mat> seg(v, f, I); int Q; cin >> Q; while (Q--) { int L, R; cin >> L >> R; L--; double a, b; cin >> a >> b; mat A = seg.query(L, R); mat x(3, 1); x[0][0] = a, x[1][0] = b, x[2][0] = 1.0; x = A * x; cout << x[0][0] << ' ' << x[1][0] << '\n'; } }