結果
| 問題 |
No.1731 Product of Subsequence
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2022-05-08 20:17:02 |
| 言語 | Lua (LuaJit 2.1.1734355927) |
| 結果 |
AC
|
| 実行時間 | 420 ms / 2,000 ms |
| コード長 | 2,868 bytes |
| コンパイル時間 | 566 ms |
| コンパイル使用メモリ | 5,376 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-11-08 05:21:44 |
| 合計ジャッジ時間 | 4,572 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 31 |
ソースコード
local mce, mfl, msq, mmi, mma, mab = math.ceil, math.floor, math.sqrt, math.min, math.max, math.abs
local function getgcd(x, y)
while 0 < x do
x, y = y % x, x
end
return y
end
local function getlcm(x, y)
local gcd = getgcd(x, y)
return mfl(x / gcd) * y
end
local function getprimes(x)
local primes = {}
local allnums = {}
for i = 1, x do allnums[i] = true end
for i = 2, x do
if allnums[i] then
table.insert(primes, i)
local lim = mfl(x / i)
for j = 2, lim do
allnums[j * i] = false
end
end
end
return primes
end
local function getdivisorparts(x, primes)
local prime_num = #primes
local tmp = {}
local lim = mce(msq(x))
local primepos = 1
local dv = primes[primepos]
while primepos <= prime_num and dv <= lim do
if x % dv == 0 then
local t = {}
t.p = dv
t.cnt = 1
x = mfl(x / dv)
while x % dv == 0 do
x = mfl(x / dv)
t.cnt = t.cnt + 1
end
table.insert(tmp, t)
lim = mce(msq(x))
end
if primepos == prime_num then break end
primepos = primepos + 1
dv = primes[primepos]
end
if x ~= 1 then
local t = {}
t.p, t.cnt = x, 1
table.insert(tmp, t)
end
return tmp
end
local function getdivisorCore(divisorparts)
local t = {}
local pat = 1
local len = #divisorparts
local allpat = 1
for i = 1, len do
allpat = allpat * (1 + divisorparts[i].cnt)
end
for t_i_pat = 0, allpat - 1 do
local div = allpat
local i_pat = t_i_pat
local ret = 1
for i = 1, len do
div = mfl(div / (divisorparts[i].cnt + 1))
local mul = mfl(i_pat / div)
i_pat = i_pat % div
for j = 1, mul do
ret = ret * divisorparts[i].p
end
end
table.insert(t, ret)
end
table.sort(t)
return t
end
local function getdivisor(x, primes)
local dvp = getdivisorparts(x, primes)
return getdivisorCore(dvp)
end
local ffi = require("ffi")
local C = ffi.C
ffi.cdef[[
long long atoll(const char*);
]]
local function lltonumber(str)
return C.atoll(str)
end
local function getgcdll(x, y)
while 0LL < x do
x, y = y % x, x
end
return y
end
local n, k = io.read("*n", "*n", "*l")
local primes = getprimes(mce(msq(1000000007)))
local dv = getdivisor(k, primes)
local dn = #dv
local dvmap = {}
for i = 1, dn do
dvmap[dv[i]] = i
end
local mod = 1000000007
local function badd(x, y) return (x + y) % mod end
local t = {}
for i = 1, dn do
t[i] = 0
end
t[1] = 1
local kll = 1LL * k
local s = io.read()
for w in s:gmatch("(%d+)") do
w = lltonumber(w)
local gcd = getgcdll(w, kll)
w = tostring(gcd):gsub("LL", "")
local a = tonumber(w)
for i = dn, 1, -1 do
local dst = getgcd(a, mfl(k / dv[i])) * dv[i]
dst = dvmap[dst]
t[dst] = badd(t[dst], t[i])
end
end
if k == 1 then
t[dn] = (t[dn] + mod - 1) % mod
end
print(t[dn])