結果
問題 | No.1731 Product of Subsequence |
ユーザー | 👑 obakyan |
提出日時 | 2022-05-08 20:17:02 |
言語 | Lua (LuaJit 2.1.1696795921) |
結果 |
AC
|
実行時間 | 420 ms / 2,000 ms |
コード長 | 2,868 bytes |
コンパイル時間 | 566 ms |
コンパイル使用メモリ | 5,376 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-11-08 05:21:44 |
合計ジャッジ時間 | 4,572 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 292 ms
5,248 KB |
testcase_01 | AC | 3 ms
5,248 KB |
testcase_02 | AC | 3 ms
5,248 KB |
testcase_03 | AC | 3 ms
5,248 KB |
testcase_04 | AC | 3 ms
5,248 KB |
testcase_05 | AC | 4 ms
5,248 KB |
testcase_06 | AC | 4 ms
5,248 KB |
testcase_07 | AC | 4 ms
5,248 KB |
testcase_08 | AC | 13 ms
5,248 KB |
testcase_09 | AC | 5 ms
5,248 KB |
testcase_10 | AC | 164 ms
5,248 KB |
testcase_11 | AC | 148 ms
5,248 KB |
testcase_12 | AC | 9 ms
5,248 KB |
testcase_13 | AC | 9 ms
5,248 KB |
testcase_14 | AC | 143 ms
5,248 KB |
testcase_15 | AC | 3 ms
5,248 KB |
testcase_16 | AC | 3 ms
5,248 KB |
testcase_17 | AC | 3 ms
5,248 KB |
testcase_18 | AC | 420 ms
5,248 KB |
testcase_19 | AC | 11 ms
5,248 KB |
testcase_20 | AC | 217 ms
5,248 KB |
testcase_21 | AC | 164 ms
5,248 KB |
testcase_22 | AC | 264 ms
5,248 KB |
testcase_23 | AC | 5 ms
5,248 KB |
testcase_24 | AC | 10 ms
5,248 KB |
testcase_25 | AC | 9 ms
5,248 KB |
testcase_26 | AC | 32 ms
5,248 KB |
testcase_27 | AC | 41 ms
5,248 KB |
testcase_28 | AC | 78 ms
5,248 KB |
testcase_29 | AC | 29 ms
5,248 KB |
testcase_30 | AC | 252 ms
5,248 KB |
testcase_31 | AC | 260 ms
5,248 KB |
testcase_32 | AC | 4 ms
5,248 KB |
testcase_33 | AC | 25 ms
5,248 KB |
testcase_34 | AC | 16 ms
5,248 KB |
ソースコード
local mce, mfl, msq, mmi, mma, mab = math.ceil, math.floor, math.sqrt, math.min, math.max, math.abs local function getgcd(x, y) while 0 < x do x, y = y % x, x end return y end local function getlcm(x, y) local gcd = getgcd(x, y) return mfl(x / gcd) * y end local function getprimes(x) local primes = {} local allnums = {} for i = 1, x do allnums[i] = true end for i = 2, x do if allnums[i] then table.insert(primes, i) local lim = mfl(x / i) for j = 2, lim do allnums[j * i] = false end end end return primes end local function getdivisorparts(x, primes) local prime_num = #primes local tmp = {} local lim = mce(msq(x)) local primepos = 1 local dv = primes[primepos] while primepos <= prime_num and dv <= lim do if x % dv == 0 then local t = {} t.p = dv t.cnt = 1 x = mfl(x / dv) while x % dv == 0 do x = mfl(x / dv) t.cnt = t.cnt + 1 end table.insert(tmp, t) lim = mce(msq(x)) end if primepos == prime_num then break end primepos = primepos + 1 dv = primes[primepos] end if x ~= 1 then local t = {} t.p, t.cnt = x, 1 table.insert(tmp, t) end return tmp end local function getdivisorCore(divisorparts) local t = {} local pat = 1 local len = #divisorparts local allpat = 1 for i = 1, len do allpat = allpat * (1 + divisorparts[i].cnt) end for t_i_pat = 0, allpat - 1 do local div = allpat local i_pat = t_i_pat local ret = 1 for i = 1, len do div = mfl(div / (divisorparts[i].cnt + 1)) local mul = mfl(i_pat / div) i_pat = i_pat % div for j = 1, mul do ret = ret * divisorparts[i].p end end table.insert(t, ret) end table.sort(t) return t end local function getdivisor(x, primes) local dvp = getdivisorparts(x, primes) return getdivisorCore(dvp) end local ffi = require("ffi") local C = ffi.C ffi.cdef[[ long long atoll(const char*); ]] local function lltonumber(str) return C.atoll(str) end local function getgcdll(x, y) while 0LL < x do x, y = y % x, x end return y end local n, k = io.read("*n", "*n", "*l") local primes = getprimes(mce(msq(1000000007))) local dv = getdivisor(k, primes) local dn = #dv local dvmap = {} for i = 1, dn do dvmap[dv[i]] = i end local mod = 1000000007 local function badd(x, y) return (x + y) % mod end local t = {} for i = 1, dn do t[i] = 0 end t[1] = 1 local kll = 1LL * k local s = io.read() for w in s:gmatch("(%d+)") do w = lltonumber(w) local gcd = getgcdll(w, kll) w = tostring(gcd):gsub("LL", "") local a = tonumber(w) for i = dn, 1, -1 do local dst = getgcd(a, mfl(k / dv[i])) * dv[i] dst = dvmap[dst] t[dst] = badd(t[dst], t[i]) end end if k == 1 then t[dn] = (t[dn] + mod - 1) % mod end print(t[dn])