結果
| 問題 |
No.583 鉄道同好会
|
| コンテスト | |
| ユーザー |
satashun
|
| 提出日時 | 2022-05-08 23:14:53 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 44 ms / 2,000 ms |
| コード長 | 11,134 bytes |
| コンパイル時間 | 2,736 ms |
| コンパイル使用メモリ | 216,540 KB |
| 最終ジャッジ日時 | 2025-01-29 05:08:58 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 16 |
ソースコード
#pragma region satashun
//#pragma GCC optimize("Ofast")
//#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
using pii = pair<int, int>;
template <class T>
using V = vector<T>;
template <class T>
using VV = V<V<T>>;
template <class T>
V<T> make_vec(size_t a) {
return V<T>(a);
}
template <class T, class... Ts>
auto make_vec(size_t a, Ts... ts) {
return V<decltype(make_vec<T>(ts...))>(a, make_vec<T>(ts...));
}
#define pb push_back
#define eb emplace_back
#define mp make_pair
#define fi first
#define se second
#define rep(i, n) rep2(i, 0, n)
#define rep2(i, m, n) for (int i = m; i < (n); i++)
#define per(i, b) per2(i, 0, b)
#define per2(i, a, b) for (int i = int(b) - 1; i >= int(a); i--)
#define ALL(c) (c).begin(), (c).end()
#define SZ(x) ((int)(x).size())
constexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n - 1); }
template <class T, class U>
void chmin(T& t, const U& u) {
if (t > u) t = u;
}
template <class T, class U>
void chmax(T& t, const U& u) {
if (t < u) t = u;
}
template <class T>
void mkuni(vector<T>& v) {
sort(ALL(v));
v.erase(unique(ALL(v)), end(v));
}
template <class T>
vector<int> sort_by(const vector<T>& v) {
vector<int> res(v.size());
iota(res.begin(), res.end(), 0);
stable_sort(res.begin(), res.end(),
[&](int i, int j) { return v[i] < v[j]; });
return res;
}
template <class T, class U>
istream& operator>>(istream& is, pair<T, U>& p) {
is >> p.first >> p.second;
return is;
}
template <class T, class U>
ostream& operator<<(ostream& os, const pair<T, U>& p) {
os << "(" << p.first << "," << p.second << ")";
return os;
}
template <class T>
istream& operator>>(istream& is, vector<T>& v) {
for (auto& x : v) {
is >> x;
}
return is;
}
template <class T>
ostream& operator<<(ostream& os, const vector<T>& v) {
os << "{";
rep(i, v.size()) {
if (i) os << ",";
os << v[i];
}
os << "}";
return os;
}
#ifdef LOCAL
void debug_out() { cerr << endl; }
template <typename Head, typename... Tail>
void debug_out(Head H, Tail... T) {
cerr << " " << H;
debug_out(T...);
}
#define debug(...) \
cerr << __LINE__ << " [" << #__VA_ARGS__ << "]:", debug_out(__VA_ARGS__)
#define dump(x) cerr << __LINE__ << " " << #x << " = " << (x) << endl
#else
#define debug(...) (void(0))
#define dump(x) (void(0))
#endif
template <class T>
void scan(vector<T>& v, T offset = T(0)) {
for (auto& x : v) {
cin >> x;
x += offset;
}
}
template <class T>
void print(T x, int suc = 1) {
cout << x;
if (suc == 1)
cout << "\n";
else if (suc == 2)
cout << " ";
}
template <class T>
void print(const vector<T>& v, int suc = 1) {
for (int i = 0; i < v.size(); ++i)
print(v[i], i == int(v.size()) - 1 ? suc : 2);
}
template <class T>
void show(T x) {
print(x, 1);
}
template <typename Head, typename... Tail>
void show(Head H, Tail... T) {
print(H, 2);
show(T...);
}
struct prepare_io {
prepare_io() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
}
} prep_io;
#pragma endregion satashun
class unionfind {
vector<int> par, rank;
public:
void init(int n) {
par.resize(n);
rank.resize(n);
for (int i = 0; i < n; i++) {
par[i] = i;
rank[i] = 0;
}
}
unionfind() {}
unionfind(int n) { init(n); }
int find(int x) {
if (par[x] == x)
return x;
else
return par[x] = find(par[x]);
}
bool unite(int x, int y) {
x = find(x);
y = find(y);
if (x == y) return false;
if (rank[x] < rank[y])
par[x] = y;
else {
par[y] = x;
if (rank[x] == rank[y]) ++rank[x];
}
return true;
}
bool same(int x, int y) { return (find(x) == find(y)); }
};
template <class T>
class Edge {
public:
int from, to, idx;
T cost;
Edge() = default;
Edge(int from, int to, T cost = T(1), int idx = -1)
: from(from), to(to), cost(cost), idx(idx) {}
operator int() const { return to; }
bool operator<(const Edge& e) const { return cost < e.cost; }
};
template <class T>
class Graph {
public:
using E = Edge<T>;
vector<vector<E>> g;
vector<E> edges;
int es;
Graph() {}
Graph(int n) : g(n), edges(0), es(0){};
int size() const { return g.size(); }
virtual void add_directed_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es++);
}
virtual void add_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es);
g[to].emplace_back(to, from, cost, es++);
}
inline vector<E>& operator[](const int& k) { return g[k]; }
inline const vector<E>& operator[](const int& k) const { return g[k]; }
void read(int M, int offset = -1, bool directed = false,
bool weighted = false) {
for (int i = 0; i < M; i++) {
int a, b;
cin >> a >> b;
a += offset;
b += offset;
T c = T(1);
if (weighted) cin >> c;
edges.emplace_back(a, b, c);
if (directed)
add_directed_edge(a, b, c);
else
add_edge(a, b, c);
}
}
};
// cost = 1 or tree
template <class T>
V<T> bfs(const Graph<T>& g, int s = 0) {
const T inf = numeric_limits<T>::max() / 2;
int n = g.size();
V<T> ds(n, inf);
queue<int> que;
que.push(s);
ds[s] = 0;
while (!que.empty()) {
auto v = que.front();
que.pop();
for (auto e : g[v]) {
T nx = ds[v] + e.cost;
if (ds[e.to] > nx) {
ds[e.to] = nx;
que.push(e.to);
}
}
}
for (auto& x : ds)
if (x == inf) x = -1;
return ds;
}
// must be optimized
template <class T>
V<T> bfs01(const Graph<T>& g, int s = 0) {
const T inf = numeric_limits<T>::max() / 2;
int n = g.size();
V<T> ds(n, inf);
using P = pair<T, int>;
deque<int> que;
que.push_back(s);
ds[s] = 0;
while (!que.empty()) {
auto v = que.front();
que.pop_front();
for (auto e : g[v]) {
T nx = ds[v] + e.cost;
if (ds[e.to] > nx) {
ds[e.to] = nx;
if (e.cost == 0) {
que.push_front(e.to);
} else {
que.push_back(e.to);
}
}
}
}
for (auto& x : ds)
if (x == inf) x = -1;
return ds;
}
template <class T>
V<T> dijkstra(const Graph<T>& g, int s = 0) {
const T inf = numeric_limits<T>::max() / 2;
int n = g.size();
V<T> ds(n, inf);
using P = pair<T, int>;
priority_queue<P, V<P>, greater<P>> que;
que.emplace(0, s);
ds[s] = 0;
while (!que.empty()) {
auto p = que.top();
que.pop();
int v = p.se;
if (ds[v] < p.fi) continue;
for (auto e : g[v]) {
T nx = ds[v] + e.cost;
if (ds[e.to] > nx) {
ds[e.to] = nx;
que.emplace(nx, e.to);
}
}
}
for (auto& x : ds)
if (x == inf) x = -1;
return ds;
}
// allow multiple edges and self loops, multiple components
template <class T, bool directed>
struct EulerianTrail : Graph<T> {
public:
using Graph<T>::g;
using Graph<T>::Graph;
using Graph<T>::edges;
using Graph<T>::es;
using E = Edge<T>;
V<int> used_vertex, used_edge, deg;
void init(int n) {
deg.assign(n, 0);
used_vertex.assign(n, 0);
}
void add_directed_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es++);
deg[from]++;
deg[to]--;
}
void add_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es);
g[to].emplace_back(to, from, cost, es++);
deg[from]++;
deg[to]++;
}
EulerianTrail(int n) : Graph<T>(n), used_vertex(n), deg(n) {}
E get_edge(int idx) const { return edges[idx]; }
/*
vector<vector<int>> enumerate_eulerian_trail() {
if (directed) {
for (auto& p : deg)
if (p != 0) return {};
} else {
for (auto& p : deg)
if (p & 1) return {};
}
used_edge.assign(M, 0);
vector<vector<int>> ret;
for (int i = 0; i < (int)g.size(); i++) {
if (g[i].empty() || used_vertex[i]) continue;
ret.emplace_back(go(i));
}
return ret;
}*/
VV<int> enumerate_semi_eulerian_trail() {
unionfind uf(g.size());
for (auto& e : edges) {
uf.unite(e.from, e.to);
}
VV<int> group(g.size());
rep(i, g.size()) group[uf.find(i)].push_back(i);
VV<int> res;
used_edge.assign(es, 0);
for (auto& vs : group) {
if (!SZ(vs)) continue;
int s = -1, t = -1;
if (directed) {
for (auto& v : vs) {
if (abs(deg[v]) > 1) {
return {};
} else if (deg[v] == 1) {
if (s != -1) return {};
s = v;
}
}
} else {
for (auto& v : vs) {
if (deg[v] & 1) {
if (s == -1)
s = v;
else if (t == -1)
t = v;
else
return {};
}
}
}
debug(s, t);
if (s == -1) s = vs[0];
res.emplace_back(go(s));
if (!SZ(res.back())) res.pop_back();
}
return res;
}
// return {id of edges}
V<int> go(int s) {
stack<pair<int, int>> st;
V<int> ord;
st.emplace(s, -1);
while (!st.empty()) {
int idx = st.top().first;
used_vertex[idx] = true;
if (g[idx].empty()) {
ord.emplace_back(st.top().second);
st.pop();
} else {
auto e = g[idx].back();
g[idx].pop_back();
if (used_edge[e.idx]) continue;
used_edge[e.idx] = true;
st.emplace(e.to, e.idx);
}
}
ord.pop_back();
reverse(ord.begin(), ord.end());
return ord;
}
};
int main() {
int N, M;
cin >> N >> M;
V<int> A(M), B(M);
EulerianTrail<int, false> g(N);
g.read(M, 0);
auto res = g.enumerate_semi_eulerian_trail();
debug(res);
show(SZ(res) == 1 ? "YES" : "NO");
return 0;
}
satashun