結果
問題 | No.1445 新入生プログラミング鯖 |
ユーザー | UMRgurashi |
提出日時 | 2022-05-16 17:05:24 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 6,773 bytes |
コンパイル時間 | 4,746 ms |
コンパイル使用メモリ | 274,136 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-14 09:18:43 |
合計ジャッジ時間 | 5,444 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 3 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> #include <cstdlib> #include <atcoder/all> using namespace atcoder; //#pragma GCC target ("avx2") //#pragma GCC optimization("O3") //#pragma GCC optimization("unroll-loops") //#pragma comment(linker, "/stack:200000000") //#pragma GCC optimize("Ofast") //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") #define int long long #define double long double #define stoi stoll //#define endl "\n" using std::abs; using namespace std; //constexpr int MOD = 1000000007; constexpr int MOD = 998244353; using mint = modint1000000007; //using mint = modint998244353; constexpr double PI = 3.14159265358979323846; const int INF = 1LL << 62; #define rep(i,n) for(int i=0;i<n;++i) #define REP(i,n) for(int i=1;i<=n;i++) #define krep(i,k,n) for(int i=(k);i<n+k;i++) #define Krep(i,k,n) for(int i=(k);i<n;i++) #define rrep(i,n) for(int i=n-1;i>=0;i--) #define Rrep(i,n) for(int i=n;i>0;i--) #define LAST(x) x[x.size()-1] #define ALL(x) (x).begin(),(x).end() #define MAX(x) *max_element(ALL(x)) #define MIN(x) *min_element(ALL(x) #define RUD(a,b) (((a)+(b)-1)/(b)) #define sum1_n(n) ((n)*(n+1)/2) #define SUM1n2(n) (n*(2*n+1)*(n+1))/6 #define SUMkn(k,n) (SUM1n(n)-SUM1n(k-1)) #define SZ(x) ((int)(x).size()) #define PB push_back #define Fi first #define Se second typedef vector<int> vint; typedef vector<vint> vvint; typedef vector<vvint> vvvint; typedef vector<double> vdouble; typedef vector<vdouble> vvdouble; typedef vector<vvdouble> vvvdouble; typedef vector<string> vstring; typedef vector<bool> vbool; typedef vector<vbool> vvbool; typedef vector<vvbool> vvvbool; typedef map<int, int> mapint; typedef pair<int, int> pint; typedef pair<string, string> pstring; typedef pair<vstring,vstring> pvstring; typedef tuple<int, int, int>tint; typedef vector<pint> vpint; typedef vector<vpint> vvpint; typedef vector<tint> vtint; typedef vector<vtint> vvtint; int GCD(int a, int b) { if (b == 0) return a; return GCD(b, a % b); } int LCM(int a, int b) { return a / GCD(a, b) * b; } double LOG(int a, int b) { return log(b) / log(a); } double DISTANCE(int x1, int y1, int x2, int y2) { return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)); } inline bool BETWEEN(int x, int min, int max) { if (min <= x && x <= max) return true; else return false; } inline bool between(int x, int min, int max) { if (min < x && x < max) return true; else return false; } inline bool BETWEEN2(int i,int j,int H,int W) { if (BETWEEN(i,0,H-1)&&BETWEEN(j,0,W-1)) return true; else return false; } template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } inline bool bit(int x, int i) { return x >> i & 1; } int in() { int x; cin >> x; return x; } string ins() { string x; cin >> x; return x; } /* const int MAXR = 210000; int fac[MAXR], finv[MAXR], inv[MAXR]; void COMinit() { fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (int i = 2; i < MAXR; i++) { fac[i] = fac[i - 1] * i % MOD; inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD; finv[i] = finv[i - 1] * inv[i] % MOD; } } int nCr(int n, int k) { if (n < k) return 0; if (n < 0 || k < 0) return 0; return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD; } */ mint nCrm(long long N, long long K) { mint res = 1; if (N < K) return 0; if (N < 0 || K < 0) return 0; for (long long n = 0; n < K; ++n) { res *= (N - n); res /= (n + 1); } return res; } int nCr2(int n, int k) { //MODらない奴 if (n < k) return 0; if (n < 0 || k < 0) return 1; int ans = 1; REP(i, k) { ans *= n--; ans /= i; } return ans; } vpint prime_factorize(int N) { vpint res; for (int i = 2; i * i <= N; i++) { if (N % i != 0) continue; int ex = 0; while (N % i == 0) { ++ex; N /= i; } res.push_back({ i, ex }); } if (N != 1) res.push_back({ N, 1 }); return res; } int ipow(int x, int n) { int ans = 1; while (n > 0) { if (n & 1) ans *= x; x *= x; n >>= 1; } return ans; } string base_to_k(int n, int k) { //n(10)→n(k) string ans = ""; while (n) { ans += to_string(n % k); n /= k; } reverse(ALL(ans)); return ans; } string base(string n, int k, int l) { //n(k)→n(l) return n; } string base_from_k(string n, int k) { //n(k)→n(10) int ans = 0; int N = n.size(); rep(i, N) ans += (n[N - 1 - i] - '0') * ipow(k, i); return to_string(ans); } template <typename T> vector<T> compress(vector<T>& X) { vector<T> vals = X; sort(ALL(vals)); vals.erase(unique(ALL(vals)), vals.end()); rep(i, SZ(X)) X[i] = lower_bound(ALL(vals), X[i]) - vals.begin(); return vals; } vector<pair<char,int>> run_length(string x) { vector<pair<char,int>> ans; char ch = x[0]; int cou = 1; REP(i, SZ(x)) { if (x[i] == x[i - 1]) { cou++; } else { ans.push_back({ ch,cou }); ch = x[i]; cou = 1; } } return ans; } void YN(bool x) { if (x) { cout << "Yes" << endl; } else { cout << "No" << endl; } } vbool prime_table(int n) { vbool prime(n + 1, true); if (n >= 0) prime[0] = false; if (n >= 1) prime[1] = false; for (int i = 2; i * i <= n; i++) { if (!prime[i]) continue; for (int j = i + i; j <= n; j += i) { prime[j] = false; } } return prime; } vint divisors(int N) { vint ans; for (int i = 1; i * i <= N; i++) { if (N % i == 0) { ans.push_back(N / i); if (i * i != N)ans.push_back(i); } } sort(ALL(ans)); return ans; } /* /// 行列積 vvint mat_mul(vvint& a, vvint& b) { vvint res(SZ(a), vint(SZ(b[0]))); rep(i, SZ(a)) rep(j, SZ(b)) rep(k, SZ(b)) { (res[i][j] += a[i][k] * b[k][j]) %= MOD; } return res; } /// 行列累乗 vvint mat_pow(vvint a,int n) { vvint res(a.size(), vint(a.size())); // 単位行列で初期化 rep(i, SZ(a))res[i][i] = 1; // 繰り返し二乗法 while (n > 0) { if (n & 1) res = mat_mul(a, res); a = mat_mul(a, a); n >>= 1; } return res; } */ const int dx[4] = { 1, 0, -1, 0 }; const int dy[4] = { 0, 1, 0, -1 }; typedef vector<mint> vmint; typedef vector<vmint> vvmint; typedef vector<vvmint> vvvmint; vbool Eratosthenes(int N) { vbool isprime(N + 1, true); isprime[1] = false; for (int p = 2; p <= N; ++p) { if (!isprime[p]) continue; for (int q = p * 2; q <= N; q += p) { isprime[q] = false; } } return isprime; } void solve() { int N = in(); rep(i, N)cout << "Hello! You're new here, right? It's nice to meet you." << endl; } signed main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(15); solve(); } //bit全探索 /* rep(i,1LL<<N){ rep(j,N){ if (bit(i,j)){ } } } */ //素因数分解 /* const auto& res = prime_factorize(N); for (auto p : res) { } */