結果
問題 | No.809 かけ算 |
ユーザー |
![]() |
提出日時 | 2022-05-16 17:09:25 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 16 ms / 2,000 ms |
コード長 | 6,718 bytes |
コンパイル時間 | 4,705 ms |
コンパイル使用メモリ | 264,576 KB |
最終ジャッジ日時 | 2025-01-29 08:42:03 |
ジャッジサーバーID (参考情報) |
judge4 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 6 |
ソースコード
#include <bits/stdc++.h>#include <cstdlib>#include <atcoder/all>using namespace atcoder;//#pragma GCC target ("avx2")//#pragma GCC optimization("O3")//#pragma GCC optimization("unroll-loops")//#pragma comment(linker, "/stack:200000000")//#pragma GCC optimize("Ofast")//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")#define int long long#define double long double#define stoi stoll//#define endl "\n"using std::abs;using namespace std;//constexpr int MOD = 1000000007;constexpr int MOD = 998244353;using mint = modint1000000007;//using mint = modint998244353;constexpr double PI = 3.14159265358979323846;const int INF = 1LL << 62;#define rep(i,n) for(int i=0;i<n;++i)#define REP(i,n) for(int i=1;i<=n;i++)#define krep(i,k,n) for(int i=(k);i<n+k;i++)#define Krep(i,k,n) for(int i=(k);i<n;i++)#define rrep(i,n) for(int i=n-1;i>=0;i--)#define Rrep(i,n) for(int i=n;i>0;i--)#define LAST(x) x[x.size()-1]#define ALL(x) (x).begin(),(x).end()#define MAX(x) *max_element(ALL(x))#define MIN(x) *min_element(ALL(x)#define RUD(a,b) (((a)+(b)-1)/(b))#define sum1_n(n) ((n)*(n+1)/2)#define SUM1n2(n) (n*(2*n+1)*(n+1))/6#define SUMkn(k,n) (SUM1n(n)-SUM1n(k-1))#define SZ(x) ((int)(x).size())#define PB push_back#define Fi first#define Se secondtypedef vector<int> vint;typedef vector<vint> vvint;typedef vector<vvint> vvvint;typedef vector<double> vdouble;typedef vector<vdouble> vvdouble;typedef vector<vvdouble> vvvdouble;typedef vector<string> vstring;typedef vector<bool> vbool;typedef vector<vbool> vvbool;typedef vector<vvbool> vvvbool;typedef map<int, int> mapint;typedef pair<int, int> pint;typedef pair<string, string> pstring;typedef pair<vstring,vstring> pvstring;typedef tuple<int, int, int>tint;typedef vector<pint> vpint;typedef vector<vpint> vvpint;typedef vector<tint> vtint;typedef vector<vtint> vvtint;int GCD(int a, int b) {if (b == 0) return a;return GCD(b, a % b);}int LCM(int a, int b) {return a / GCD(a, b) * b;}double LOG(int a, int b) {return log(b) / log(a);}double DISTANCE(int x1, int y1, int x2, int y2) {return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));}inline bool BETWEEN(int x, int min, int max) {if (min <= x && x <= max)return true;elsereturn false;}inline bool between(int x, int min, int max) {if (min < x && x < max) return true;else return false;}inline bool BETWEEN2(int i,int j,int H,int W) {if (BETWEEN(i,0,H-1)&&BETWEEN(j,0,W-1)) return true;else return false;}template<class T>inline bool chmin(T& a, T b) {if (a > b) {a = b;return true;}return false;}template<class T>inline bool chmax(T& a, T b) {if (a < b) {a = b;return true;}return false;}inline bool bit(int x, int i) {return x >> i & 1;}int in() { int x; cin >> x; return x; }string ins() { string x; cin >> x; return x; }/*const int MAXR = 210000;int fac[MAXR], finv[MAXR], inv[MAXR];void COMinit() {fac[0] = fac[1] = 1;finv[0] = finv[1] = 1;inv[1] = 1;for (int i = 2; i < MAXR; i++) {fac[i] = fac[i - 1] * i % MOD;inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD;finv[i] = finv[i - 1] * inv[i] % MOD;}}int nCr(int n, int k) {if (n < k)return 0;if (n < 0 || k < 0)return 0;return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;}*/mint nCrm(long long N, long long K) {mint res = 1;if (N < K)return 0;if (N < 0 || K < 0)return 0;for (long long n = 0; n < K; ++n) {res *= (N - n);res /= (n + 1);}return res;}int nCr2(int n, int k) {//MODらない奴if (n < k)return 0;if (n < 0 || k < 0)return 1;int ans = 1;REP(i, k) {ans *= n--;ans /= i;}return ans;}vpint prime_factorize(int N) {vpint res;for (int i = 2; i * i <= N; i++) {if (N % i != 0) continue;int ex = 0;while (N % i == 0) {++ex;N /= i;}res.push_back({ i, ex });}if (N != 1) res.push_back({ N, 1 });return res;}int ipow(int x, int n) {int ans = 1;while (n > 0) {if (n & 1) ans *= x;x *= x;n >>= 1;}return ans;}string base_to_k(int n, int k) {//n(10)→n(k)string ans = "";while (n) {ans += to_string(n % k);n /= k;}reverse(ALL(ans));return ans;}string base(string n, int k, int l) {//n(k)→n(l)return n;}string base_from_k(string n, int k) {//n(k)→n(10)int ans = 0;int N = n.size();rep(i, N)ans += (n[N - 1 - i] - '0') * ipow(k, i);return to_string(ans);}template <typename T>vector<T> compress(vector<T>& X) {vector<T> vals = X;sort(ALL(vals));vals.erase(unique(ALL(vals)), vals.end());rep(i, SZ(X))X[i] = lower_bound(ALL(vals), X[i]) - vals.begin();return vals;}vector<pair<char,int>> run_length(string x) {vector<pair<char,int>> ans;char ch = x[0];int cou = 1;REP(i, SZ(x)) {if (x[i] == x[i - 1]) {cou++;}else {ans.push_back({ ch,cou });ch = x[i];cou = 1;}}return ans;}void YN(bool x) {if (x) {cout << "Yes" << endl;}else {cout << "No" << endl;}}vbool prime_table(int n) {vbool prime(n + 1, true);if (n >= 0) prime[0] = false;if (n >= 1) prime[1] = false;for (int i = 2; i * i <= n; i++) {if (!prime[i]) continue;for (int j = i + i; j <= n; j += i) {prime[j] = false;}}return prime;}vint divisors(int N) {vint ans;for (int i = 1; i * i <= N; i++) {if (N % i == 0) {ans.push_back(N / i);if (i * i != N)ans.push_back(i);}}sort(ALL(ans));return ans;}/*/// 行列積vvint mat_mul(vvint& a, vvint& b) {vvint res(SZ(a), vint(SZ(b[0])));rep(i, SZ(a)) rep(j, SZ(b)) rep(k, SZ(b)) {(res[i][j] += a[i][k] * b[k][j]) %= MOD;}return res;}/// 行列累乗vvint mat_pow(vvint a,int n) {vvint res(a.size(), vint(a.size()));// 単位行列で初期化rep(i, SZ(a))res[i][i] = 1;// 繰り返し二乗法while (n > 0) {if (n & 1) res = mat_mul(a, res);a = mat_mul(a, a);n >>= 1;}return res;}*/const int dx[4] = { 1, 0, -1, 0 };const int dy[4] = { 0, 1, 0, -1 };typedef vector<mint> vmint;typedef vector<vmint> vvmint;typedef vector<vvmint> vvvmint;vbool Eratosthenes(int N) {vbool isprime(N + 1, true);isprime[1] = false;for (int p = 2; p <= N; ++p) {if (!isprime[p]) continue;for (int q = p * 2; q <= N; q += p) {isprime[q] = false;}}return isprime;}void solve() {int C = in();cout << "1 " << C << endl;}signed main() {ios::sync_with_stdio(false);cin.tie(nullptr);cout << fixed << setprecision(15);solve();}//bit全探索/*rep(i,1LL<<N){rep(j,N){if (bit(i,j)){}}}*///素因数分解/*const auto& res = prime_factorize(N);for (auto p : res) {}*/