結果
問題 | No.303 割れません |
ユーザー | mamekin |
提出日時 | 2016-02-14 11:52:22 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 3,470 ms / 10,000 ms |
コード長 | 7,646 bytes |
コンパイル時間 | 1,534 ms |
コンパイル使用メモリ | 120,068 KB |
実行使用メモリ | 45,748 KB |
最終ジャッジ日時 | 2024-09-22 06:25:31 |
合計ジャッジ時間 | 31,152 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 1,604 ms
24,156 KB |
testcase_04 | AC | 3,444 ms
45,748 KB |
testcase_05 | AC | 3,462 ms
45,056 KB |
testcase_06 | AC | 3,449 ms
45,588 KB |
testcase_07 | AC | 2,376 ms
44,512 KB |
testcase_08 | AC | 2,389 ms
45,652 KB |
testcase_09 | AC | 2,395 ms
45,556 KB |
testcase_10 | AC | 1 ms
6,944 KB |
testcase_11 | AC | 3,470 ms
45,140 KB |
testcase_12 | AC | 2,435 ms
45,040 KB |
testcase_13 | AC | 1,809 ms
26,468 KB |
testcase_14 | AC | 1,015 ms
24,556 KB |
testcase_15 | AC | 789 ms
14,872 KB |
testcase_16 | AC | 2 ms
6,944 KB |
ソースコード
#define _USE_MATH_DEFINES #include <cstdio> #include <iostream> #include <sstream> #include <fstream> #include <iomanip> #include <algorithm> #include <cmath> #include <complex> #include <string> #include <vector> #include <list> #include <queue> #include <stack> #include <set> #include <map> #include <bitset> #include <numeric> #include <limits> #include <climits> #include <cfloat> #include <functional> using namespace std; class FFT { private: vector<complex<double> > v; void execute(const vector<complex<double> >& input, bool isInverse, vector<complex<double> >& output) const { int n = input.size(); vector<complex<double> > x(input.begin(), input.end()); for(int h=1; h<n; h*=2){ int w = n / h / 2; vector<complex<double> > y = x; for(int k=0; k<h; ++k){ complex<double> omega = polar<double>(1, (isInverse? -1:1) * M_PI * k / h); for(int j=0; j<w; ++j){ complex<double> y0 = y[2*w*k+j]; complex<double> y1 = y[2*w*k+j+w] * omega; x[w*k+j] = y0 + y1; x[w*(k+h)+j] = y0 - y1; } } } output.swap(x); } public: void dft(const vector<long long>& input) { if(input.size() == 0){ v.clear(); return; } int n = 1; while(n < (int)input.size()) n *= 2; vector<complex<double> > x(n, 0); for(unsigned i=0; i<input.size(); ++i) x[i] = complex<double>((double)input[i], 0.0); execute(x, false, v); } void idft(vector<long long>& output) const { int n = v.size(); vector<complex<double> > y; execute(v, true, y); output.resize(n); for(int i=0; i<n; ++i){ double tmp = y[i].real() / n; if(tmp < 0) output[i] = (long long)(tmp - 0.5); else output[i] = (long long)(tmp + 0.5); } } FFT operator*(const FFT& other) const { int n = v.size(); if(n != other.v.size()) throw(exception()); FFT ans; ans.v.resize(n); for(int i=0; i<n; ++i) ans.v[i] = v[i] * other.v[i]; return ans; } }; class Bigint { private: static const int LEN = 5; static const int MAX = 100000; vector<long long> a; bool sign; void normalize(){ while(!a.empty() && a.back() == 0) a.pop_back(); if(a.empty()) sign = true; } Bigint(const vector<long long>& x){ a = x; sign = true; normalize(); } public: Bigint(){ sign = true; } Bigint(long long x){ sign = (x >= 0); x = abs(x); while(x > 0){ a.push_back(x % MAX); x /= MAX; } } Bigint(const string& s){ sign = true; long long tmp = MAX; for(int i=s.size()-1; i>=0; --i){ if(tmp == MAX){ a.push_back(0); tmp = 1; } if('0' <= s[i] && s[i] <= '9'){ a.back() += (s[i] - '0') * tmp; tmp *= 10; } else if(i == 0 && s[0] == '-'){ sign = false; } else{ throw(exception()); } } normalize(); } long long getNum() const{ long long ans = 0; for(int i=a.size()-1; i>=0; --i){ ans *= MAX; ans += a[i]; } return ans * (sign? 1:-1); } string getStr() const{ ostringstream oss; if(a.size() == 0) return "0"; if(!sign) oss << '-'; for(int i=a.size()-1; i>=0; --i){ oss << a[i]; oss << setw(LEN) << setfill('0'); } return oss.str(); } Bigint operator+(const Bigint& x) const{ if(sign ^ x.sign){ Bigint tmp = x; tmp.sign = !tmp.sign; return *this - tmp; } Bigint ans; ans.sign = sign; long long carry = 0; unsigned i = 0; while(i < a.size() || i < x.a.size() || carry > 0){ if(i < a.size()) carry += a[i]; if(i < x.a.size()) carry += x.a[i]; ans.a.push_back(carry % MAX); carry /= MAX; ++ i; } return ans; } Bigint operator-(const Bigint& x) const{ if(sign ^ x.sign){ Bigint tmp = x; tmp.sign = !tmp.sign; return *this + tmp; } Bigint ans; long long carry = 0; unsigned i=0; while(i < a.size() || i < x.a.size()){ if(i < a.size()) carry += a[i]; if(i < x.a.size()) carry -= x.a[i]; if(carry < 0){ ans.a.push_back(MAX + carry); carry = -1; } else{ ans.a.push_back(carry); carry = 0; } ++ i; } if(carry == -1){ ans.sign = !ans.sign; for(unsigned j=0; j<ans.a.size(); ++j) ans.a[j] = MAX - ans.a[j] - 1; ++ ans.a[0]; } ans.normalize(); return ans; } Bigint operator*(const Bigint& x) const{ vector<long long> b = a; vector<long long> c = x.a; int n = max(b.size(), c.size()); b.resize(n * 2, 0); c.resize(n * 2, 0); FFT p, q, r; p.dft(b); q.dft(c); r = p * q; Bigint ans; ans.sign = !(sign ^ x.sign); r.idft(ans.a); for(int i=0; i<2*n-1; ++i){ ans.a[i+1] += ans.a[i] / MAX; ans.a[i] %= MAX; } ans.normalize(); return ans; } bool operator<(const Bigint& x) const{ if(sign ^ x.sign) return x.sign; if(a.size() != x.a.size()) return !(sign ^ (a.size() < x.a.size())); for(int i=a.size()-1; i>=0; --i){ if(a[i] != x.a[i]) return !(sign ^ (a[i] < x.a[i])); } return false; } }; // 行列の積 template <class T> vector<vector<T> > matrixProduct(const vector<vector<T> >& x, const vector<vector<T> >& y) { int a = x.size(); int b = x[0].size(); int c = y[0].size(); vector<vector<T> > z(a, vector<T>(c, 0)); for(int i=0; i<a; ++i){ for(int j=0; j<c; ++j){ for(int k=0; k<b; ++k){ z[i][j] = z[i][j] + x[i][k] * y[k][j]; } } } return z; } // 行列の累乗 template <class T> vector<vector<T> > matrixPower(const vector<vector<T> >& x, int k) { int n = x.size(); vector<vector<T> > y(n, vector<T>(n, 0)); for(int i=0; i<n; ++i) y[i][i] = 1; // 積の単位元 vector<vector<T> > z = x; while(k > 0){ if(k & 1) y = matrixProduct(y, z); z = matrixProduct(z, z); k >>= 1; } return y; } Bigint solve(int len) { vector<vector<Bigint> > v = {{1, 1}, {1, 0}}; v = matrixPower(v, len); return v[0][1]; } int main() { int len; cin >> len; if(len == 2){ cout << 3 << endl << "INF" << endl; return 0; } Bigint ans = solve(len); if(len % 2 == 0){ Bigint x = solve(len / 2); ans = ans - x * x; } cout << len << endl << ans.getStr() << endl; return 0; }