結果
問題 | No.1955 Not Prime |
ユーザー | suisen |
提出日時 | 2022-05-20 21:58:29 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
CE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 21,968 bytes |
コンパイル時間 | 1,991 ms |
コンパイル使用メモリ | 205,564 KB |
最終ジャッジ日時 | 2024-11-15 02:17:31 |
合計ジャッジ時間 | 2,585 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
main.cpp: In instantiation of 'std::istream& operator>>(std::istream&, std::vector<_Tp>&) [with T = std::array<int, 2>; std::istream = std::basic_istream<char>]': main.cpp:197:26: required from 'void read(Args& ...) [with Args = {std::vector<std::array<int, 2>, std::allocator<std::array<int, 2> > >}]' main.cpp:565:9: required from here main.cpp:186:55: error: no match for 'operator>>' (operand types are 'std::istream' {aka 'std::basic_istream<char>'} and 'std::array<int, 2>') 186 | for (auto it = a.begin(); it != a.end(); ++it) in >> *it; | ~~~^~~~~~ In file included from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/sstream:38, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/complex:45, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/ccomplex:39, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/x86_64-pc-linux-gnu/bits/stdc++.h:54, from main.cpp:1: /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/istream:120:7: note: candidate: 'std::basic_istream<_CharT, _Traits>::__istream_type& std::basic_istream<_CharT, _Traits>::operator>>(__istream_type& (*)(__istream_type&)) [with _CharT = char; _Traits = std::char_traits<char>; __istream_type = std::basic_istream<char>]' 120 | operator>>(__istream_type& (*__pf)(__istream_type&)) | ^~~~~~~~ /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/istream:120:36: note: no known conversion for argument 1 from 'std::array<int, 2>' to 'std::basic_istream<char>::__istream_type& (*)(std::basic_istream<char>::__istream_type&)' {aka 'std::basic_istream<char>& (*)(std::basic_istream<char>&)'} 120 | operator>>(__istream_type& (*__pf)(__istream_type&)) | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/
ソースコード
#include <bits/stdc++.h> #include <limits> #include <type_traits> namespace suisen { // ! utility template <typename ...Types> using constraints_t = std::enable_if_t<std::conjunction_v<Types...>, std::nullptr_t>; template <bool cond_v, typename Then, typename OrElse> constexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) { if constexpr (cond_v) { return std::forward<Then>(then); } else { return std::forward<OrElse>(or_else); } } // ! function template <typename ReturnType, typename Callable, typename ...Args> using is_same_as_invoke_result = std::is_same<std::invoke_result_t<Callable, Args...>, ReturnType>; template <typename F, typename T> using is_uni_op = is_same_as_invoke_result<T, F, T>; template <typename F, typename T> using is_bin_op = is_same_as_invoke_result<T, F, T, T>; template <typename Comparator, typename T> using is_comparator = std::is_same<std::invoke_result_t<Comparator, T, T>, bool>; // ! integral template <typename T, typename = constraints_t<std::is_integral<T>>> constexpr int bit_num = std::numeric_limits<std::make_unsigned_t<T>>::digits; template <typename T, unsigned int n> struct is_nbit { static constexpr bool value = bit_num<T> == n; }; template <typename T, unsigned int n> static constexpr bool is_nbit_v = is_nbit<T, n>::value; // ? template <typename T> struct safely_multipliable {}; template <> struct safely_multipliable<int> { using type = long long; }; template <> struct safely_multipliable<long long> { using type = __int128_t; }; template <> struct safely_multipliable<unsigned int> { using type = unsigned long long; }; template <> struct safely_multipliable<unsigned long int> { using type = __uint128_t; }; template <> struct safely_multipliable<unsigned long long> { using type = __uint128_t; }; template <> struct safely_multipliable<float> { using type = float; }; template <> struct safely_multipliable<double> { using type = double; }; template <> struct safely_multipliable<long double> { using type = long double; }; template <typename T> using safely_multipliable_t = typename safely_multipliable<T>::type; } // namespace suisen // ! type aliases using i128 = __int128_t; using u128 = __uint128_t; template <typename T> using pq_greater = std::priority_queue<T, std::vector<T>, std::greater<T>>; template <typename T, typename U> using umap = std::unordered_map<T, U>; // ! macros (capital: internal macro) #define OVERLOAD2(_1,_2,name,...) name #define OVERLOAD3(_1,_2,_3,name,...) name #define OVERLOAD4(_1,_2,_3,_4,name,...) name #define REP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l);i<(r);i+=(s)) #define REP3(i,l,r) REP4(i,l,r,1) #define REP2(i,n) REP3(i,0,n) #define REPINF3(i,l,s) for(std::remove_reference_t<std::remove_const_t<decltype(l)>>i=(l);;i+=(s)) #define REPINF2(i,l) REPINF3(i,l,1) #define REPINF1(i) REPINF2(i,0) #define RREP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l)+fld((r)-(l)-1,s)*(s);i>=(l);i-=(s)) #define RREP3(i,l,r) RREP4(i,l,r,1) #define RREP2(i,n) RREP3(i,0,n) #define rep(...) OVERLOAD4(__VA_ARGS__, REP4 , REP3 , REP2 )(__VA_ARGS__) #define rrep(...) OVERLOAD4(__VA_ARGS__, RREP4 , RREP3 , RREP2 )(__VA_ARGS__) #define repinf(...) OVERLOAD3(__VA_ARGS__, REPINF3, REPINF2, REPINF1)(__VA_ARGS__) #define CAT_I(a, b) a##b #define CAT(a, b) CAT_I(a, b) #define UNIQVAR(tag) CAT(tag, __LINE__) #define loop(n) for (std::remove_reference_t<std::remove_const_t<decltype(n)>> UNIQVAR(loop_variable) = n; UNIQVAR(loop_variable) --> 0;) #define all(iterable) std::begin(iterable), std::end(iterable) #define input(type, ...) type __VA_ARGS__; read(__VA_ARGS__) #ifdef LOCAL # define debug(...) debug_internal(#__VA_ARGS__, __VA_ARGS__) template <class T, class... Args> void debug_internal(const char* s, T&& first, Args&&... args) { constexpr const char* prefix = "[\033[32mDEBUG\033[m] "; constexpr const char* open_brakets = sizeof...(args) == 0 ? "" : "("; constexpr const char* close_brakets = sizeof...(args) == 0 ? "" : ")"; std::cerr << prefix << open_brakets << s << close_brakets << ": " << open_brakets << std::forward<T>(first); ((std::cerr << ", " << std::forward<Args>(args)), ...); std::cerr << close_brakets << "\n"; } #else # define debug(...) void(0) #endif // ! I/O utilities // pair template <typename T, typename U> std::ostream& operator<<(std::ostream& out, const std::pair<T, U> &a) { return out << a.first << ' ' << a.second; } // tuple template <unsigned int N = 0, typename ...Args> std::ostream& operator<<(std::ostream& out, const std::tuple<Args...> &a) { if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) { return out; } else { out << std::get<N>(a); if constexpr (N + 1 < std::tuple_size_v<std::tuple<Args...>>) { out << ' '; } return operator<<<N + 1>(out, a); } } // vector template <typename T> std::ostream& operator<<(std::ostream& out, const std::vector<T> &a) { for (auto it = a.begin(); it != a.end();) { out << *it; if (++it != a.end()) out << ' '; } return out; } // array template <typename T, size_t N> std::ostream& operator<<(std::ostream& out, const std::array<T, N> &a) { for (auto it = a.begin(); it != a.end();) { out << *it; if (++it != a.end()) out << ' '; } return out; } inline void print() { std::cout << '\n'; } template <typename Head, typename... Tail> inline void print(const Head &head, const Tail &...tails) { std::cout << head; if (sizeof...(tails)) std::cout << ' '; print(tails...); } template <typename Iterable> auto print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") -> decltype(std::cout << *v.begin(), void()) { for (auto it = v.begin(); it != v.end();) { std::cout << *it; if (++it != v.end()) std::cout << sep; } std::cout << end; } // pair template <typename T, typename U> std::istream& operator>>(std::istream& in, std::pair<T, U> &a) { return in >> a.first >> a.second; } // tuple template <unsigned int N = 0, typename ...Args> std::istream& operator>>(std::istream& in, std::tuple<Args...> &a) { if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) { return in; } else { return operator>><N + 1>(in >> std::get<N>(a), a); } } // vector template <typename T> std::istream& operator>>(std::istream& in, std::vector<T> &a) { for (auto it = a.begin(); it != a.end(); ++it) in >> *it; return in; } // array template <typename T, size_t N> std::istream& operator>>(std::istream& in, std::array<T, N> &a) { for (auto it = a.begin(); it != a.end(); ++it) in >> *it; return in; } template <typename ...Args> void read(Args &...args) { ( std::cin >> ... >> args ); } // ! integral utilities // Returns pow(-1, n) template <typename T> constexpr inline int pow_m1(T n) { return -(n & 1) | 1; } // Returns pow(-1, n) template <> constexpr inline int pow_m1<bool>(bool n) { return -int(n) | 1; } // Returns floor(x / y) template <typename T> constexpr inline T fld(const T x, const T y) { return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y; } template <typename T> constexpr inline T cld(const T x, const T y) { return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y; } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr> constexpr inline int popcount(const T x) { return __builtin_popcount(x); } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr> constexpr inline int popcount(const T x) { return __builtin_popcount(x); } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr> constexpr inline int popcount(const T x) { return __builtin_popcountll(x); } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clzll(x) : suisen::bit_num<T>; } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctzll(x) : suisen::bit_num<T>; } template <typename T> constexpr inline int floor_log2(const T x) { return suisen::bit_num<T> - 1 - count_lz(x); } template <typename T> constexpr inline int ceil_log2(const T x) { return floor_log2(x) + ((x & -x) != x); } template <typename T> constexpr inline int kth_bit(const T x, const unsigned int k) { return (x >> k) & 1; } template <typename T> constexpr inline int parity(const T x) { return popcount(x) & 1; } struct all_subset { struct all_subset_iter { const int s; int t; constexpr all_subset_iter(int s) : s(s), t(s + 1) {} constexpr auto operator*() const { return t; } constexpr auto operator++() {} constexpr auto operator!=(std::nullptr_t) { return t ? (--t &= s, true) : false; } }; int s; constexpr all_subset(int s) : s(s) {} constexpr auto begin() { return all_subset_iter(s); } constexpr auto end() { return nullptr; } }; // ! container template <typename T, typename Comparator, suisen::constraints_t<suisen::is_comparator<Comparator, T>> = nullptr> auto priqueue_comp(const Comparator comparator) { return std::priority_queue<T, std::vector<T>, Comparator>(comparator); } template <typename Iterable> auto isize(const Iterable &iterable) -> decltype(int(iterable.size())) { return iterable.size(); } template <typename T, typename Gen, suisen::constraints_t<suisen::is_same_as_invoke_result<T, Gen, int>> = nullptr> auto generate_vector(int n, Gen generator) { std::vector<T> v(n); for (int i = 0; i < n; ++i) v[i] = generator(i); return v; } template <typename T> auto generate_range_vector(T l, T r) { return generate_vector(r - l, [l](int i) { return l + i; }); } template <typename T> auto generate_range_vector(T n) { return generate_range_vector(0, n); } template <typename T> void sort_unique_erase(std::vector<T> &a) { std::sort(a.begin(), a.end()); a.erase(std::unique(a.begin(), a.end()), a.end()); } template <typename InputIterator, typename BiConsumer> auto foreach_adjacent_values(InputIterator first, InputIterator last, BiConsumer f) -> decltype(f(*first++, *last), void()) { if (first != last) for (auto itr = first, itl = itr++; itr != last; itl = itr++) f(*itl, *itr); } template <typename Container, typename BiConsumer> auto foreach_adjacent_values(Container c, BiConsumer f) -> decltype(c.begin(), c.end(), void()){ foreach_adjacent_values(c.begin(), c.end(), f); } // ! other utilities // x <- min(x, y). returns true iff `x` has chenged. template <typename T> inline bool chmin(T &x, const T &y) { if (y >= x) return false; x = y; return true; } // x <- max(x, y). returns true iff `x` has chenged. template <typename T> inline bool chmax(T &x, const T &y) { if (y <= x) return false; x = y; return true; } namespace suisen {} using namespace suisen; using namespace std; struct io_setup { io_setup(int precision = 20) { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(precision); } } io_setup_ {}; // ! code from here #include <cassert> #include <cmath> #include <vector> #include <cstdint> namespace suisen::internal::sieve { constexpr std::uint8_t K = 8; constexpr std::uint8_t PROD = 2 * 3 * 5; constexpr std::uint8_t RM[K] = { 1, 7, 11, 13, 17, 19, 23, 29 }; constexpr std::uint8_t DR[K] = { 6, 4, 2, 4, 2, 4, 6, 2 }; constexpr std::uint8_t DF[K][K] = { { 0, 0, 0, 0, 0, 0, 0, 1 }, { 1, 1, 1, 0, 1, 1, 1, 1 }, { 2, 2, 0, 2, 0, 2, 2, 1 }, { 3, 1, 1, 2, 1, 1, 3, 1 }, { 3, 3, 1, 2, 1, 3, 3, 1 }, { 4, 2, 2, 2, 2, 2, 4, 1 }, { 5, 3, 1, 4, 1, 3, 5, 1 }, { 6, 4, 2, 4, 2, 4, 6, 1 }, }; constexpr std::uint8_t DRP[K] = { 48, 32, 16, 32, 16, 32, 48, 16 }; constexpr std::uint8_t DFP[K][K] = { { 0, 0, 0, 0, 0, 0, 0, 8 }, { 8, 8, 8, 0, 8, 8, 8, 8 }, { 16, 16, 0, 16, 0, 16, 16, 8 }, { 24, 8, 8, 16, 8, 8, 24, 8 }, { 24, 24, 8, 16, 8, 24, 24, 8 }, { 32, 16, 16, 16, 16, 16, 32, 8 }, { 40, 24, 8, 32, 8, 24, 40, 8 }, { 48, 32, 16, 32, 16, 32, 48, 8 }, }; constexpr std::uint8_t MASK[K][K] = { { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 }, { 0x02, 0x20, 0x10, 0x01, 0x80, 0x08, 0x04, 0x40 }, { 0x04, 0x10, 0x01, 0x40, 0x02, 0x80, 0x08, 0x20 }, { 0x08, 0x01, 0x40, 0x20, 0x04, 0x02, 0x80, 0x10 }, { 0x10, 0x80, 0x02, 0x04, 0x20, 0x40, 0x01, 0x08 }, { 0x20, 0x08, 0x80, 0x02, 0x40, 0x01, 0x10, 0x04 }, { 0x40, 0x04, 0x08, 0x80, 0x01, 0x10, 0x20, 0x02 }, { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }, }; constexpr std::uint8_t OFFSET[K][K] = { { 0, 1, 2, 3, 4, 5, 6, 7, }, { 1, 5, 4, 0, 7, 3, 2, 6, }, { 2, 4, 0, 6, 1, 7, 3, 5, }, { 3, 0, 6, 5, 2, 1, 7, 4, }, { 4, 7, 1, 2, 5, 6, 0, 3, }, { 5, 3, 7, 1, 6, 0, 4, 2, }, { 6, 2, 3, 7, 0, 4, 5, 1, }, { 7, 6, 5, 4, 3, 2, 1, 0, }, }; constexpr std::uint8_t mask_to_index(const std::uint8_t bits) { switch (bits) { case 1 << 0: return 0; case 1 << 1: return 1; case 1 << 2: return 2; case 1 << 3: return 3; case 1 << 4: return 4; case 1 << 5: return 5; case 1 << 6: return 6; case 1 << 7: return 7; default: assert(false); } } } // namespace suisen::internal::sieve namespace suisen { template <unsigned int N> class SimpleSieve { private: static constexpr unsigned int siz = N / internal::sieve::PROD + 1; static std::uint8_t flag[siz]; public: SimpleSieve() { using namespace internal::sieve; flag[0] |= 1; unsigned int k_max = (unsigned int) std::sqrt(N + 2) / PROD; for (unsigned int kp = 0; kp <= k_max; ++kp) { for (std::uint8_t bits = ~flag[kp]; bits; bits &= bits - 1) { const std::uint8_t mp = mask_to_index(bits & -bits), m = RM[mp]; unsigned int kr = kp * (PROD * kp + 2 * m) + m * m / PROD; for (std::uint8_t mq = mp; kr < siz; kr += kp * DR[mq] + DF[mp][mq], ++mq &= 7) { flag[kr] |= MASK[mp][mq]; } } } } std::vector<int> prime_list(unsigned int max_val = N) const { using namespace internal::sieve; std::vector<int> res { 2, 3, 5 }; res.reserve(max_val / 25); for (unsigned int i = 0, offset = 0; i < siz and offset < max_val; ++i, offset += PROD) { for (uint8_t f = ~flag[i]; f;) { uint8_t g = f & -f; res.push_back(offset + RM[mask_to_index(g)]); f ^= g; } } while (res.size() and (unsigned int) res.back() > max_val) res.pop_back(); return res; } bool is_prime(const unsigned int p) const { using namespace internal::sieve; switch (p) { case 2: case 3: case 5: return true; default: switch (p % PROD) { case RM[0]: return ((flag[p / PROD] >> 0) & 1) == 0; case RM[1]: return ((flag[p / PROD] >> 1) & 1) == 0; case RM[2]: return ((flag[p / PROD] >> 2) & 1) == 0; case RM[3]: return ((flag[p / PROD] >> 3) & 1) == 0; case RM[4]: return ((flag[p / PROD] >> 4) & 1) == 0; case RM[5]: return ((flag[p / PROD] >> 5) & 1) == 0; case RM[6]: return ((flag[p / PROD] >> 6) & 1) == 0; case RM[7]: return ((flag[p / PROD] >> 7) & 1) == 0; default: return false; } } } }; template <unsigned int N> std::uint8_t SimpleSieve<N>::flag[SimpleSieve<N>::siz]; template <unsigned int N> class Sieve { private: static constexpr unsigned int base_max = (N + 1) * internal::sieve::K / internal::sieve::PROD; static unsigned int pf[base_max + internal::sieve::K]; public: Sieve() { using namespace internal::sieve; pf[0] = 1; unsigned int k_max = ((unsigned int) std::sqrt(N + 1) - 1) / PROD; for (unsigned int kp = 0; kp <= k_max; ++kp) { const int base_i = kp * K, base_act_i = kp * PROD; for (int mp = 0; mp < K; ++mp) { const int m = RM[mp], i = base_i + mp; if (pf[i] == 0) { unsigned int act_i = base_act_i + m; unsigned int base_k = (kp * (PROD * kp + 2 * m) + m * m / PROD) * K; for (std::uint8_t mq = mp; base_k <= base_max; base_k += kp * DRP[mq] + DFP[mp][mq], ++mq &= 7) { pf[base_k + OFFSET[mp][mq]] = act_i; } } } } } bool is_prime(const unsigned int p) const { using namespace internal::sieve; switch (p) { case 2: case 3: case 5: return true; default: switch (p % PROD) { case RM[0]: return pf[p / PROD * K + 0] == 0; case RM[1]: return pf[p / PROD * K + 1] == 0; case RM[2]: return pf[p / PROD * K + 2] == 0; case RM[3]: return pf[p / PROD * K + 3] == 0; case RM[4]: return pf[p / PROD * K + 4] == 0; case RM[5]: return pf[p / PROD * K + 5] == 0; case RM[6]: return pf[p / PROD * K + 6] == 0; case RM[7]: return pf[p / PROD * K + 7] == 0; default: return false; } } } int prime_factor(const unsigned int p) const { using namespace internal::sieve; switch (p % PROD) { case 0: case 2: case 4: case 6: case 8: case 10: case 12: case 14: case 16: case 18: case 20: case 22: case 24: case 26: case 28: return 2; case 3: case 9: case 15: case 21: case 27: return 3; case 5: case 25: return 5; case RM[0]: return pf[p / PROD * K + 0] ? pf[p / PROD * K + 0] : p; case RM[1]: return pf[p / PROD * K + 1] ? pf[p / PROD * K + 1] : p; case RM[2]: return pf[p / PROD * K + 2] ? pf[p / PROD * K + 2] : p; case RM[3]: return pf[p / PROD * K + 3] ? pf[p / PROD * K + 3] : p; case RM[4]: return pf[p / PROD * K + 4] ? pf[p / PROD * K + 4] : p; case RM[5]: return pf[p / PROD * K + 5] ? pf[p / PROD * K + 5] : p; case RM[6]: return pf[p / PROD * K + 6] ? pf[p / PROD * K + 6] : p; case RM[7]: return pf[p / PROD * K + 7] ? pf[p / PROD * K + 7] : p; default: assert(false); } } /** * Returns a vector of `{ prime, index }`. */ std::vector<std::pair<int, int>> factorize(unsigned int n) const { assert(0 < n and n <= N); std::vector<std::pair<int, int>> prime_powers; while (n > 1) { int p = prime_factor(n), c = 0; do { n /= p, ++c; } while (n % p == 0); prime_powers.emplace_back(p, c); } return prime_powers; } /** * Returns the divisors of `n`. * It is NOT guaranteed that the returned vector is sorted. */ std::vector<int> divisors(unsigned int n) const { assert(0 < n and n <= N); std::vector<int> divs { 1 }; for (auto [prime, index] : factorize(n)) { int sz = divs.size(); for (int i = 0; i < sz; ++i) { int d = divs[i]; for (int j = 0; j < index; ++j) { divs.push_back(d *= prime); } } } return divs; } }; template <unsigned int N> unsigned int Sieve<N>::pf[Sieve<N>::base_max + internal::sieve::K]; } // namespace suisen Sieve<1000000> sieve; int dlen(int n) { if (n < 10) return 1; if (n < 100) return 2; return 3; } #include <atcoder/twosat> int main() { input(int, n); vector<array<int, 2>> ps(n); read(ps); array<int, 4> pows { 1, 10, 100, 1000 }; vector<array<int, 2>> ls(n); rep(i, n) { ls[i][0] = dlen(ps[i][0]); ls[i][1] = dlen(ps[i][1]); } atcoder::two_sat sat(n); rep(i, n) rep(x, 2) { rep(j, n) rep(y, 2) { debug(i, x, j, y, ps[i][x] * pows[ls[j][y]] + ps[j][y]); if (sieve.is_prime(ps[i][x] * pows[ls[j][y]] + ps[j][y])) { sat.add_clause(i, not x, j, y); } } } print(sat.satisfiable() ? "Yes" : "No"); return 0; }