結果
| 問題 |
No.1944 ∞
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2022-05-21 16:29:26 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 12,384 bytes |
| コンパイル時間 | 3,169 ms |
| コンパイル使用メモリ | 278,836 KB |
| 実行使用メモリ | 6,272 KB |
| 最終ジャッジ日時 | 2025-06-20 00:29:55 |
| 合計ジャッジ時間 | 3,866 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 36 WA * 1 |
ソースコード
#include <bits/stdc++.h>
#ifndef DASSERT_H_
#define DASSERT_H_
#if DEBUG
#define dassert(x) assert(x)
#else
#define dassert(x) ((void)0)
#endif
#endif // DASSERT_H_
using Float = long double;
struct Point {
Float x = 0, y = 0;
Float Norm() const { return std::sqrt(x * x + y * y); }
Point Conj() const { return {x, -y}; }
Float Real() const { return x; }
Float Imag() const { return y; }
Float Arg() const { return std::atan2(Imag(), Real()); }
Point& operator+=(const Point& p) {
this->x += p.x;
this->y += p.y;
return *this;
}
Point operator+(const Point& p) const { return Point(*this) += p; }
Point& operator-=(const Point& p) {
this->x -= p.x;
this->y -= p.y;
return *this;
}
Point operator-(const Point& p) const { return Point(*this) -= p; }
Point operator-() const { return {-x, -y}; }
Point& operator*=(Float t) {
this->x *= t;
this->y *= t;
return *this;
}
Point operator*(Float t) const { return Point(*this) *= t; }
Point& operator*=(const Point& p) {
Float r = x * p.x - y * p.y;
Float i = x * p.y + y * p.x;
this->x = r;
this->y = i;
return *this;
}
Point operator*(const Point& p) const { return Point(*this) *= p; }
Point& operator/=(Float t) {
this->x /= t;
this->y /= t;
return *this;
}
Point operator/(Float t) const { return Point(*this) /= t; }
Point& operator/=(const Point& p) {
Float q = p.x * p.x + p.y * p.y;
dassert(q != 0);
Float r = x * p.x + y * p.y;
Float i = x * p.y - y * p.x;
this->x = r;
this->y = i;
return *this;
}
Point operator/(const Point& p) const { return Point(*this) /= p; }
bool operator<(const Point& p) const {
if (x != p.x) {
return x < p.x;
}
return y < p.y;
}
Point Rot90() const { return {-y, x}; }
static Point Polar(Float r, Float theta) {
return Point{cos(theta), sin(theta)} *= r;
}
};
Float Cross(const Point& p, const Point& q) { return p.x * q.y - p.y * q.x; }
std::istream& operator>>(std::istream& is, Point& p) {
is >> p.x >> p.y;
return is;
}
std::ostream& operator<<(std::ostream& os, const Point& p) {
os << "(" << p.x << "," << p.y << ")";
return os;
}
struct LineSegment {
Point p, q;
};
struct Line {
Point p, q;
};
std::ostream& operator<<(std::ostream& os, const Line& l) {
os << "(" << l.p << "," << l.q << ")";
return os;
}
int Sign(Float x) {
const Float eps = 1e-9L;
if (x < -eps) return -1;
if (x > eps) return 1;
return 0;
}
bool Intersect(const LineSegment& s, const LineSegment& t) {
return Sign(Cross(s.q - s.p, t.p - s.p) * Cross(s.q - s.p, t.q - s.p)) <= 0 &&
Sign(Cross(t.q - t.p, s.p - t.p) * Cross(t.q - t.p, s.q - t.p)) <= 0;
}
bool Intersect(const Line& l, const Point& p) {
return Sign(Cross(l.p - p, l.q - p)) == 0;
};
struct Circle {
Point center;
Float radius;
std::vector<Point> Intersections(const Circle& c) const {
// TODO: Handle cases where there is no intersection and there is only one
// intersection.
auto sq = [](Float x) -> Float { return x * x; };
Point p = c.center - center;
Float l = p.Norm();
if (l >= radius + c.radius || (l + radius) <= c.radius ||
(l + c.radius) <= radius) {
return {};
}
Float x = (sq(radius) - sq(c.radius) + sq(l)) / (2 * l);
Float a = std::sqrt(sq(radius) - sq(x));
Point perpendicular_foot = p * (x / l);
Point perpendicular = p.Rot90() * (a / l);
return {center + perpendicular_foot + perpendicular,
center + perpendicular_foot - perpendicular};
}
// TODO: Add Contains method that checks if a point is contained in the
// circle. That function should use EPS on check to take into account the
// computation error. Proabbly this library should also provide a commom EPS
// value (or provide utility functions that uses EPS inside of it).
};
const Float pi = 3.141592653589793238462643383279502884L;
#ifndef CONSTANTS_H_
#define CONSTANTS_H_
// big = 2305843009213693951 = 2^61-1 ~= 2.3*10^18
const int64_t big = std::numeric_limits<int64_t>::max() / 4;
#endif // CONSTANTS_H_
#ifndef DEBUG_H_
#define DEBUG_H_
#ifndef TYPE_TRAITS_H_
#define TYPE_TRAITS_H_
template <typename T, typename = void>
struct is_dereferenceable : std::false_type {};
template <typename T>
struct is_dereferenceable<T, std::void_t<decltype(*std::declval<T>())>>
: std::true_type {};
template <typename T, typename = void>
struct is_iterable : std::false_type {};
template <typename T>
struct is_iterable<T, std::void_t<decltype(std::begin(std::declval<T>())),
decltype(std::end(std::declval<T>()))>>
: std::true_type {};
template <typename T, typename = void>
struct is_applicable : std::false_type {};
template <typename T>
struct is_applicable<T, std::void_t<decltype(std::tuple_size<T>::value)>>
: std::true_type {};
#endif // TYPE_TRAITS_H
template <typename T, typename... Ts>
void debug(std::ostream& os, const T& value, const Ts&... args);
template <typename T>
void debug(std::ostream& os, const T& v) {
if constexpr (std::is_same<int64_t, std::decay_t<T>>::value) {
if (v == big) {
os << "big";
} else {
os << v;
}
} else if constexpr (std::is_same<char*, std::decay_t<T>>::value ||
std::is_same<std::string, T>::value) {
os << v;
} else if constexpr (is_dereferenceable<T>::value) {
os << "{";
if (v) {
debug(os, *v);
} else {
os << "nil";
}
os << "}";
} else if constexpr (is_iterable<T>::value) {
os << "{";
for (auto it = std::begin(v); it != std::end(v); ++it) {
if (it != std::begin(v)) os << ", ";
debug(os, *it);
}
os << "}";
} else if constexpr (is_applicable<T>::value) {
os << "{";
std::apply([&os](const auto&... args) { debug(os, args...); }, v);
os << "}";
} else {
os << v;
}
}
template <typename T, typename... Ts>
void debug(std::ostream& os, const T& value, const Ts&... args) {
debug(os, value);
os << ", ";
debug(os, args...);
}
#if DEBUG
#define dbg(...) \
do { \
std::cerr << #__VA_ARGS__ << ": "; \
debug(std::cerr, __VA_ARGS__); \
std::cerr << " (L" << __LINE__ << ")\n"; \
} while (0)
#else
#define dbg(...)
#endif
#endif // DEBUG_H_
#ifndef FIX_H_
#define FIX_H_
template <class F>
struct FixPoint {
F f;
template <class... Args>
decltype(auto) operator()(Args&&... args) const {
return f(std::ref(*this), std::forward<Args>(args)...);
}
};
template <class F>
FixPoint<std::decay_t<F>> Fix(F&& f) {
return {std::forward<F>(f)};
}
#endif // FIX_H_
#ifndef IO_H_
#define IO_H
void read_from_cin() {}
template <typename T, typename... Ts>
void read_from_cin(T& value, Ts&... args) {
std::cin >> value;
read_from_cin(args...);
}
#define rd(type, ...) \
type __VA_ARGS__; \
read_from_cin(__VA_ARGS__);
#define ints(...) rd(int, __VA_ARGS__);
#define strings(...) rd(string, __VA_ARGS__);
const char *yes_str = "Yes", *no_str = "No";
template <typename T>
void write_to_cout(const T& value) {
if constexpr (std::is_same<T, bool>::value) {
std::cout << (value ? yes_str : no_str);
} else if constexpr (is_iterable<T>::value &&
!std::is_same<T, std::string>::value) {
for (auto it = std::begin(value); it != std::end(value); ++it) {
if (it != std::begin(value)) std::cout << " ";
std::cout << *it;
}
} else {
std::cout << value;
}
}
template <typename T, typename... Ts>
void write_to_cout(const T& value, const Ts&... args) {
write_to_cout(value);
std::cout << ' ';
write_to_cout(args...);
}
#define wt(...) \
do { \
write_to_cout(__VA_ARGS__); \
cout << '\n'; \
} while (0)
template <typename T>
std::istream& operator>>(std::istream& is, std::vector<T>& v) {
for (T& vi : v) is >> vi;
return is;
}
template <typename T, typename U>
std::istream& operator>>(std::istream& is, std::pair<T, U>& p) {
is >> p.first >> p.second;
return is;
}
#endif // IO_H_
#ifndef MACROS_H_
#define MACROS_H_
#define all(x) (x).begin(), (x).end()
#define eb(...) emplace_back(__VA_ARGS__)
#define pb(...) push_back(__VA_ARGS__)
#define dispatch(_1, _2, _3, name, ...) name
#define as_i64(x) \
( \
[] { \
static_assert( \
std::is_integral< \
typename std::remove_reference<decltype(x)>::type>::value, \
"rep macro supports std integral types only"); \
}, \
static_cast<int64_t>(x))
#define rep3(i, a, b) for (int64_t i = as_i64(a); i < as_i64(b); ++i)
#define rep2(i, n) rep3(i, 0, n)
#define rep1(n) rep2(_loop_variable_, n)
#define rep(...) dispatch(__VA_ARGS__, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep3(i, a, b) for (int64_t i = as_i64(b) - 1; i >= as_i64(a); --i)
#define rrep2(i, n) rrep3(i, 0, n)
#define rrep1(n) rrep2(_loop_variable_, n)
#define rrep(...) dispatch(__VA_ARGS__, rrep3, rrep2, rrep1)(__VA_ARGS__)
#define each3(k, v, c) for (auto&& [k, v] : c)
#define each2(e, c) for (auto&& e : c)
#define each(...) dispatch(__VA_ARGS__, each3, each2)(__VA_ARGS__)
template <typename T, typename U>
bool chmax(T& a, U b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <typename T, typename U>
bool chmin(T& a, U b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <typename T, typename U>
auto max(T a, U b) {
return a > b ? a : b;
}
template <typename T, typename U>
auto min(T a, U b) {
return a < b ? a : b;
}
template <typename T>
auto max(const T& v) {
return *std::max_element(v.begin(), v.end());
}
template <typename T>
auto min(const T& v) {
return *std::min_element(v.begin(), v.end());
}
template <typename T>
int64_t sz(const T& v) {
return std::size(v);
}
template <typename T>
int64_t popcount(T i) {
return std::bitset<std::numeric_limits<T>::digits>(i).count();
}
template <typename T>
bool hasbit(T s, int i) {
return std::bitset<std::numeric_limits<T>::digits>(s)[i];
}
template <typename T, typename U>
auto div_floor(T n, U d) {
if (d < 0) {
n = -n;
d = -d;
}
if (n < 0) {
return -((-n + d - 1) / d);
}
return n / d;
};
template <typename T, typename U>
auto div_ceil(T n, U d) {
if (d < 0) {
n = -n;
d = -d;
}
if (n < 0) {
return -(-n / d);
}
return (n + d - 1) / d;
}
template <typename T>
bool even(T x) {
return x % 2 == 0;
}
std::array<std::pair<int64_t, int64_t>, 4> adjacent(int64_t i, int64_t j) {
return {{{i + 1, j}, {i, j + 1}, {i - 1, j}, {i, j - 1}}};
}
bool inside(int64_t i, int64_t j, int64_t I, int64_t J) {
return 0 <= i && i < I && 0 <= j && j < J;
}
template <typename T>
void sort(T& v) {
return std::sort(v.begin(), v.end());
}
template <typename T, typename Compare>
void sort(T& v, Compare comp) {
return std::sort(v.begin(), v.end(), comp);
}
template <typename T>
void reverse(T& v) {
return std::reverse(v.begin(), v.end());
}
template <typename T>
typename T::value_type accumulate(const T& v) {
return std::accumulate(v.begin(), v.end(), typename T::value_type());
}
using i64 = int64_t;
using i32 = int32_t;
template <typename T>
using low_priority_queue =
std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <typename T>
using V = std::vector<T>;
template <typename T>
using VV = V<V<T>>;
#endif // MACROS_H_
void Main();
int main() {
std::ios_base::sync_with_stdio(false);
std::cin.tie(NULL);
std::cout << std::fixed << std::setprecision(20);
Main();
return 0;
}
using namespace std;
#define int i64
void Main() {
ints(n);
rd(Point, p);
V<double> r(n);
cin >> r;
double sum = accumulate(r);
wt([&] {
rep(i, n) {
double d = abs(p.Norm() - r[i]);
double e = sum - r[i];
if (d - 1e-6 < e * 2) return true;
}
return false;
}());
}