結果
問題 | No.1956 猫の額 |
ユーザー | suisen |
提出日時 | 2022-05-24 00:30:47 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
MLE
|
実行時間 | - |
コード長 | 15,115 bytes |
コンパイル時間 | 4,212 ms |
コンパイル使用メモリ | 178,812 KB |
実行使用メモリ | 20,188 KB |
最終ジャッジ日時 | 2024-09-20 14:15:58 |
合計ジャッジ時間 | 26,651 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | MLE | - |
testcase_01 | -- | - |
testcase_02 | -- | - |
testcase_03 | -- | - |
testcase_04 | -- | - |
testcase_05 | -- | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
ソースコード
#include <array> #include <iostream> #include <vector> #include <atcoder/modint> #include <atcoder/convolution> using mint = atcoder::modint; #include <algorithm> #include <cassert> #include <iostream> #include <vector> namespace suisen { template <typename mint> class inv_mods { public: inv_mods() {} inv_mods(int n) { ensure(n); } const mint& operator[](int i) const { ensure(i); return invs[i]; } static void ensure(int n) { int sz = invs.size(); if (sz < 2) invs = {0, 1}, sz = 2; if (sz < n + 1) { invs.resize(n + 1); for (int i = sz; i <= n; ++i) invs[i] = mint(mod - mod / i) * invs[mod % i]; } } private: static std::vector<mint> invs; static constexpr int mod = mint::mod(); }; template <typename mint> std::vector<mint> inv_mods<mint>::invs{}; } namespace suisen { template <typename mint> using convolution_t = std::vector<mint> (*)(const std::vector<mint> &, const std::vector<mint> &); template <typename mint> class FPS : public std::vector<mint> { public: using std::vector<mint>::vector; FPS(const std::initializer_list<mint> l) : std::vector<mint>::vector(l) {} FPS(const std::vector<mint> &v) : std::vector<mint>::vector(v) {} FPS(std::vector<mint> &&v) : std::vector<mint>::vector(std::move(v)) {} static void set_multiplication(convolution_t<mint> multiplication) { FPS<mint>::mult = multiplication; } inline const mint operator[](int n) const noexcept { return n <= deg() ? unsafe_get(n) : 0; } inline mint& operator[](int n) noexcept { ensure_deg(n); return unsafe_get(n); } inline int size() const noexcept { return std::vector<mint>::size(); } inline int deg() const noexcept { return size() - 1; } inline int normalize() { while (this->size() and this->back() == 0) this->pop_back(); return deg(); } inline FPS& pre_inplace(int max_deg) noexcept { if (deg() > max_deg) this->resize(std::max(0, max_deg + 1)); return *this; } inline FPS pre(int max_deg) const noexcept { return FPS(*this).pre_inplace(max_deg); } inline FPS operator+() const { return FPS(*this); } FPS operator-() const { FPS f(*this); for (auto &e : f) e = mint::mod() - e; return f; } inline FPS& operator++() { ++(*this)[0]; return *this; } inline FPS& operator--() { --(*this)[0]; return *this; } inline FPS& operator+=(const mint x) { (*this)[0] += x; return *this; } inline FPS& operator-=(const mint x) { (*this)[0] -= x; return *this; } FPS& operator+=(const FPS &g) { ensure_deg(g.deg()); for (int i = 0; i <= g.deg(); ++i) unsafe_get(i) += g.unsafe_get(i); return *this; } FPS& operator-=(const FPS &g) { ensure_deg(g.deg()); for (int i = 0; i <= g.deg(); ++i) unsafe_get(i) -= g.unsafe_get(i); return *this; } inline FPS& operator*=(const FPS &g) { return *this = FPS<mint>::mult(*this, g); } inline FPS& operator*=( FPS &&g) { return *this = FPS<mint>::mult(*this, g); } inline FPS& operator*=(const mint x) { for (auto &e : *this) e *= x; return *this; } FPS& operator/=(FPS &&g) { const int fd = normalize(), gd = g.normalize(); assert(gd >= 0); if (fd < gd) { this->clear(); return *this; } if (gd == 0) return *this *= g.unsafe_get(0).inv(); static constexpr int THRESHOLD_NAIVE_POLY_QUOTIENT = 256; if (gd <= THRESHOLD_NAIVE_POLY_QUOTIENT) { *this = std::move(naive_div_inplace(std::move(g), gd).first); return *this; } std::reverse(this->begin(), this->end()), std::reverse(g.begin(), g.end()); const int k = fd - gd; *this *= g.inv_inplace(k), this->resize(k + 1); std::reverse(this->begin(), this->end()); return *this; } FPS& operator%=(FPS &&g) { int fd = normalize(), gd = g.normalize(); assert(gd >= 0); if (fd < gd) return *this; if (gd == 0) { this->clear(); return *this; } static constexpr int THRESHOLD_NAIVE_REMAINDER = 256; if (gd <= THRESHOLD_NAIVE_REMAINDER) return naive_div_inplace(std::move(g), gd).second; *this -= g * (*this / g); return pre_inplace(gd - 1); } inline FPS& operator/=(const FPS &g) { return *this /= FPS(g); } inline FPS& operator%=(const FPS &g) { return *this %= FPS(g); } FPS& operator<<=(const int shamt) { this->insert(this->begin(), shamt, 0); return *this; } FPS& operator>>=(const int shamt) { if (shamt > size()) this->clear(); else this->erase(this->begin(), this->begin() + shamt); return *this; } inline FPS operator+(FPS &&g) const { return FPS(*this) += std::move(g); } inline FPS operator-(FPS &&g) const { return FPS(*this) -= std::move(g); } inline FPS operator*(FPS &&g) const { return FPS(*this) *= std::move(g); } inline FPS operator/(FPS &&g) const { return FPS(*this) /= std::move(g); } inline FPS operator%(FPS &&g) const { return FPS(*this) %= std::move(g); } inline FPS operator+(const FPS &g) const { return FPS(*this) += g; } inline FPS operator+(const mint x) const { return FPS(*this) += x; } inline FPS operator-(const FPS &g) const { return FPS(*this) -= g; } inline FPS operator-(const mint x) const { return FPS(*this) -= x; } inline FPS operator*(const FPS &g) const { return FPS(*this) *= g; } inline FPS operator*(const mint x) const { return FPS(*this) *= x; } inline FPS operator/(const FPS &g) const { return FPS(*this) /= g; } inline FPS operator%(const FPS &g) const { return FPS(*this) %= g; } inline friend FPS operator*(const mint x, const FPS &f) { return f * x; } inline friend FPS operator*(const mint x, FPS &&f) { return f *= x; } inline FPS operator<<(const int shamt) { return FPS(*this) <<= shamt; } inline FPS operator>>(const int shamt) { return FPS(*this) >>= shamt; } friend bool operator==(const FPS &f, const FPS &g) { int n = f.size(), m = g.size(); if (n < m) return g == f; for (int i = 0; i < m; ++i) if (f.unsafe_get(i) != g.unsafe_get(i)) return false; for (int i = m; i < n; ++i) if (f.unsafe_get(i) != 0) return false; return true; } FPS& diff_inplace() { if (this->size() == 0) return *this; for (int i = 1; i <= deg(); ++i) unsafe_get(i - 1) = unsafe_get(i) * i; this->pop_back(); return *this; } FPS& intg_inplace() { int d = deg(); ensure_deg(d + 1); for (int i = d; i >= 0; --i) unsafe_get(i + 1) = unsafe_get(i) * invs[i + 1]; unsafe_get(0) = 0; return *this; } FPS& inv_inplace(const int max_deg) { FPS res { unsafe_get(0).inv() }; for (int k = 1; k <= max_deg; k *= 2) { FPS tmp(this->pre(k * 2) * (res * res)); res *= 2, res -= tmp.pre_inplace(2 * k); } return *this = std::move(res), pre_inplace(max_deg); } FPS& log_inplace(const int max_deg) { FPS f_inv = inv(max_deg); diff_inplace(), *this *= f_inv, pre_inplace(max_deg - 1), intg_inplace(); return *this; } FPS& exp_inplace(const int max_deg) { FPS res {1}; for (int k = 1; k <= max_deg; k *= 2) res *= ++(pre(k * 2) - res.log(k * 2)), res.pre_inplace(k * 2); return *this = std::move(res), pre_inplace(max_deg); } FPS& pow_inplace(const long long k, const int max_deg) { int tlz = 0; while (tlz <= deg() and unsafe_get(tlz) == 0) ++tlz; if (tlz * k > max_deg) { this->clear(); return *this; } *this >>= tlz; mint base = (*this)[0]; *this *= base.inv(), log_inplace(max_deg), *this *= k, exp_inplace(max_deg), *this *= base.pow(k); return *this <<= tlz * k, pre_inplace(max_deg); } inline FPS diff() const { return FPS(*this).diff_inplace(); } inline FPS intg() const { return FPS(*this).intg_inplace(); } inline FPS inv(const int max_deg) const { return FPS(*this).inv_inplace(max_deg); } inline FPS log(const int max_deg) const { return FPS(*this).log_inplace(max_deg); } inline FPS exp(const int max_deg) const { return FPS(*this).exp_inplace(max_deg); } inline FPS pow(const long long k, const int max_deg) const { return FPS(*this).pow_inplace(k, max_deg); } mint eval(mint x) const { mint y = 0; for (int i = size() - 1; i >= 0; --i) y = y * x + unsafe_get(i); return y; } private: static inline inv_mods<mint> invs; static convolution_t<mint> mult; inline void ensure_deg(int d) { if (deg() < d) this->resize(d + 1, 0); } inline const mint& unsafe_get(int i) const { return std::vector<mint>::operator[](i); } inline mint& unsafe_get(int i) { return std::vector<mint>::operator[](i); } std::pair<FPS, FPS&> naive_div_inplace(FPS &&g, const int gd) { const int k = deg() - gd; mint head_inv = g.unsafe_get(gd).inv(); FPS q(k + 1); for (int i = k; i >= 0; --i) { mint div = this->unsafe_get(i + gd) * head_inv; q.unsafe_get(i) = div; for (int j = 0; j <= gd; ++j) this->unsafe_get(i + j) -= div * g.unsafe_get(j); } return {q, pre_inplace(gd - 1)}; } }; template <typename mint> convolution_t<mint> FPS<mint>::mult = [](const auto &, const auto &) { std::cerr << "convolution function is not available." << std::endl; assert(false); return std::vector<mint>{}; }; } // namespace suisen template <typename mint> auto sqrt(suisen::FPS<mint> a) -> decltype(mint::mod(), suisen::FPS<mint>{}) { assert(false); } template <typename mint> auto log(suisen::FPS<mint> a) -> decltype(mint::mod(), suisen::FPS<mint>{}) { return a.log(a.deg()); } template <typename mint> auto exp(suisen::FPS<mint> a) -> decltype(mint::mod(), mint()) { return a.exp(a.deg()); } template <typename mint, typename T> auto pow(suisen::FPS<mint> a, T b) -> decltype(mint::mod(), mint()) { return a.pow(b, a.deg()); } template <typename mint> auto inv(suisen::FPS<mint> a) -> decltype(mint::mod(), suisen::FPS<mint>{}) { return a.inv(a.deg()); } namespace suisen { template <typename mint> FPS<mint> polynomial_interpolation(const std::vector<mint>& xs, const std::vector<mint>& ys) { assert(xs.size() == ys.size()); int n = xs.size(); std::vector<FPS<mint>> seg(2 * n), g(2 * n); for (int i = 0; i < n; ++i) seg[n + i] = FPS<mint>{ -xs[i], 1 }; for (int i = n - 1; i > 0; --i) { seg[i] = seg[i * 2] * seg[i * 2 + 1]; } g[1] = std::move(seg[1].diff_inplace()); for (int i = 1; i < n; ++i) { int l = 2 * i, r = l + 1; g[l] = g[i] % seg[l], g[r] = g[i] % seg[r]; } for (int i = 0; i < n; ++i) g[n + i] = FPS<mint>{ ys[i] / g[n + i][0] }; for (int i = n - 1; i > 0; --i) { int l = 2 * i, r = l + 1; g[i] = g[l] * seg[r] + g[r] * seg[l]; } return g[1]; } } // namespace suisen constexpr int N = 100000; constexpr long long MOD1 = 1107296257; constexpr long long MOD2 = 1711276033; constexpr long long MOD3 = 1224736769; constexpr long long M1M2 = MOD1 * MOD2; constexpr long long INV_M1_MOD2 = atcoder::internal::inv_gcd(MOD1, MOD2).second; constexpr long long INV_M1M2_MOD3 = atcoder::internal::inv_gcd(M1M2, MOD3).second; using mint1 = atcoder::static_modint<MOD1>; using mint2 = atcoder::static_modint<MOD2>; using mint3 = atcoder::static_modint<MOD3>; mint garner(mint1 c1, mint2 c2, mint3 c3) { const long long m1m2 = mint(M1M2).val(); long long x1 = c1.val(); long long x2 = (atcoder::static_modint<MOD2>(c2.val() - x1) * INV_M1_MOD2).val(); long long x3 = (atcoder::static_modint<MOD3>(c3.val() - x1 - x2 * MOD1) * INV_M1M2_MOD3).val(); return x1 + x2 * MOD1 + x3 * m1m2; } template <typename T> std::vector<T> solve(int n, int c, int s, std::array<int, N + 1> cnt) { suisen::FPS<T>::set_multiplication([](const auto& a, const auto& b) { return atcoder::convolution(a, b); }); std::vector<std::vector<T>> binom(n + 1); for (int i = 0; i <= n; ++i) { binom[i].resize(i + 1); binom[i][0] = binom[i][i] = 1; for (int j = 1; j < i; ++j) { binom[i][j] = binom[i - 1][j - 1] + binom[i - 1][j]; } } std::vector<T> ans(s + 1); const int m1 = s / 4, m2 = m1 + s / 4, m3 = m2 + s / 4, m4 = s + 1; std::array<int, 5> sep{ 0, m1, m2, m3, s + 1 }; for (int sep_i = 0; sep_i < 4; ++sep_i) { const int l = sep[sep_i], r = sep[sep_i + 1]; std::vector<T> xs(n + 1); std::vector<std::vector<T>> ys(r - l, std::vector<T>(n + 1)); for (int x = 0; x <= n; ++x) { xs[x] = x; std::vector<T> dp(s + 1); dp[0] = 1; for (int val = N; val >= 1; --val) if (const int p = cnt[val]; p != 0) { for (int sum = s; sum >= 0; --sum) { const int max_num = std::min(p, sum / val); T pow_x = 1; for (int num = 1; num <= max_num; ++num) { pow_x *= x; dp[sum] += dp[sum - val * num] * binom[p][num] * pow_x; } } } for (int sum = l; sum < r; ++sum) { ys[sum - l][x] = dp[sum]; } } for (int sum = l; sum < r; ++sum) { ans[sum] = suisen::polynomial_interpolation(xs, ys[sum - l])[c]; } } return ans; } int main() { int n, m, c; std::cin >> n >> m >> c; mint::set_mod(m); int s = 0; std::array<int, N + 1> cnt{}; for (int i = 0; i < n; ++i) { int e; std::cin >> e; s += e; ++cnt[e]; } auto ans1 = solve<mint1>(n, c, s, cnt); auto ans2 = solve<mint2>(n, c, s, cnt); auto ans3 = solve<mint3>(n, c, s, cnt); for (int sum = 1; sum <= s; ++sum) { std::cout << garner(ans1[sum], ans2[sum], ans3[sum]).val() << " \n"[s == sum]; } return 0; }