結果
問題 | No.2020 Sum of Common Prefix Length |
ユーザー | souta-1326 |
提出日時 | 2022-05-24 23:19:42 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 2,076 bytes |
コンパイル時間 | 337 ms |
コンパイル使用メモリ | 82,432 KB |
実行使用メモリ | 267,388 KB |
最終ジャッジ日時 | 2024-09-20 14:35:07 |
合計ジャッジ時間 | 17,025 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 38 ms
58,752 KB |
testcase_01 | AC | 43 ms
52,864 KB |
testcase_02 | AC | 37 ms
52,480 KB |
testcase_03 | AC | 123 ms
78,252 KB |
testcase_04 | AC | 119 ms
77,984 KB |
testcase_05 | AC | 128 ms
78,176 KB |
testcase_06 | AC | 125 ms
78,336 KB |
testcase_07 | AC | 352 ms
97,408 KB |
testcase_08 | AC | 374 ms
97,280 KB |
testcase_09 | AC | 358 ms
97,408 KB |
testcase_10 | AC | 355 ms
97,408 KB |
testcase_11 | AC | 366 ms
97,536 KB |
testcase_12 | AC | 355 ms
97,280 KB |
testcase_13 | AC | 368 ms
97,408 KB |
testcase_14 | AC | 360 ms
97,280 KB |
testcase_15 | AC | 501 ms
129,280 KB |
testcase_16 | AC | 510 ms
128,640 KB |
testcase_17 | AC | 497 ms
156,456 KB |
testcase_18 | AC | 448 ms
134,244 KB |
testcase_19 | AC | 447 ms
138,620 KB |
testcase_20 | AC | 948 ms
265,108 KB |
testcase_21 | AC | 676 ms
221,460 KB |
testcase_22 | AC | 681 ms
221,128 KB |
testcase_23 | AC | 715 ms
219,260 KB |
testcase_24 | AC | 700 ms
239,444 KB |
testcase_25 | AC | 703 ms
238,100 KB |
testcase_26 | TLE | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
ソースコード
class Fenwick_Tree: def __init__(self,N:int): self.N = N self.dat = [0]*(N+1) def add(self,p:int,x:int): p += 1 while p <= self.N: self.dat[p] += x p += p&-p def _sum(self,r:int): s = 0 while r: s += self.dat[r] r -= r&-r return s sum = lambda self,l,r:self._sum(r)-self._sum(l) class EulerTour: def __init__(self,G): self.N = len(G) self.begin = [0]*self.N self.end = [0]*self.N self.B_v = Fenwick_Tree(self.N*2) cnt = 0 f = 0 itr = [0]*self.N par = [0]*self.N par[f] = -1 while f != -1: if itr[f] == 0: self.begin[f] = cnt;cnt+=1 if itr[f] == len(G[f]): self.end[f] = cnt;cnt+=1 f = par[f] continue par[G[f][itr[f]]] = f itr[f]+=1 f = G[f][itr[f]-1] def add(self,p:int,num:int =1): self.B_v.add(self.begin[p],num) self.B_v.add(self.end[p],-num) def query(self,p:int): return self.B_v.sum(0,self.begin[p]+1) def main(): N = int(input()) S = [input() for _ in range(N)] Q = int(input()) T = [0]*Q X = [0]*Q C = [""]*Q for i in range(Q): I = input().split() T[i] = int(I[0]);X[i] = int(I[1])-1 if T[i]==1:C[i] = I[2] path = [[0] for _ in range(N)] node = [""] nex = [[-1]*26] S2 = S[:] for i in range(Q): if T[i] == 1: S2[X[i]] += C[i] for i in range(N): now_node = 0 for c in S2[i]: z = ord(c)-ord("a") if nex[now_node][z] == -1: nex[now_node][z] = len(node) node.append(c) nex.append([-1]*26) now_node = nex[now_node][z] path[i].append(now_node) V = len(node) G = [[] for _ in range(V)] for i in range(V): for j in range(26): if nex[i][j] != -1: G[i].append(nex[i][j]) Eul = EulerTour(G) for i in range(N): for j in range(len(S[i])):Eul.add(path[i][j+1]) for i in range(Q): if T[i] == 1: S[X[i]] += C[i] Eul.add(path[X[i]][len(S[X[i]])]) else: print(Eul.query(path[X[i]][len(S[X[i]])])) if __name__ == "__main__": main()