結果

問題 No.1441 MErGe
ユーザー H3PO4
提出日時 2022-05-26 09:37:39
言語 PyPy3
(7.3.15)
結果
WA  
実行時間 -
コード長 1,790 bytes
コンパイル時間 267 ms
コンパイル使用メモリ 82,304 KB
実行使用メモリ 112,512 KB
最終ジャッジ日時 2024-09-20 14:57:31
合計ジャッジ時間 10,167 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 3 WA * 25
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
import itertools

input = sys.stdin.buffer.readline


class Bit:
    """https://ikatakos.com/pot/programming_algorithm/data_structure/binary_indexed_tree から拝借しています。"""

    def __init__(self, n):
        self.size = n
        self.tree = [0] * (n + 1)
        self.depth = n.bit_length()

    def __getitem__(self, item):
        return self.sum(item) - self.sum(item - 1)

    def initialize(self, A):
        for i, a in enumerate(A, 1):
            self.tree[i] = a
            j = (i & -i) >> 1
            while j:
                self.tree[i] += self.tree[i - j]
                j >>= 1

    def sum(self, i):
        s = 0
        while i > 0:
            s += self.tree[i]
            i -= i & -i
        return s

    def add(self, i, x):
        while i <= self.size:
            self.tree[i] += x
            i += i & -i

    def lower_bound(self, x):
        """ 累積和がx以上になる最小のindexと、その直前までの累積和 """
        sum_ = 0
        pos = 0
        for i in range(self.depth, -1, -1):
            k = pos + (1 << i)
            if k <= self.size and sum_ + self.tree[k] < x:
                sum_ += self.tree[k]
                pos += 1 << i
        return pos + 1


N, Q = map(int, input().split())
A = tuple(map(int, input().split()))
As = [0] + list(itertools.accumulate(A))
bit = Bit(N + 1)
bit.initialize([0] + [1] * N)
for _ in range(Q):
    t, l, r = map(int, input().split())
    if t == 1:
        indices = []
        for i in range(l, r):
            indices.append(bit.lower_bound(i))
        for idx in indices:
            bit.add(idx + 1, -1)
    else:
        assert t == 2
        lidx = bit.lower_bound(l - 1) - 1
        ridx = bit.lower_bound(r + 1) - 2
        print(As[ridx] - As[lidx])
0