結果

問題 No.1326 ふたりのDominator
ユーザー maspymaspy
提出日時 2022-05-27 03:07:00
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 78 ms / 2,000 ms
コード長 27,714 bytes
コンパイル時間 3,263 ms
コンパイル使用メモリ 238,168 KB
実行使用メモリ 35,652 KB
最終ジャッジ日時 2024-09-20 15:09:58
合計ジャッジ時間 5,078 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 1 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 1 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 1 ms
5,376 KB
testcase_10 AC 3 ms
5,376 KB
testcase_11 AC 3 ms
5,376 KB
testcase_12 AC 62 ms
19,536 KB
testcase_13 AC 68 ms
19,540 KB
testcase_14 AC 63 ms
19,544 KB
testcase_15 AC 60 ms
19,464 KB
testcase_16 AC 57 ms
18,616 KB
testcase_17 AC 46 ms
16,544 KB
testcase_18 AC 41 ms
18,188 KB
testcase_19 AC 36 ms
18,184 KB
testcase_20 AC 66 ms
32,840 KB
testcase_21 AC 70 ms
33,172 KB
testcase_22 AC 78 ms
35,652 KB
testcase_23 AC 41 ms
15,772 KB
testcase_24 AC 72 ms
19,796 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "/home/maspy/compro/library/my_template.hpp"
#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using pi = pair<ll, ll>;
using vi = vector<ll>;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;

template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vec(type, name, ...) vector<type> name(__VA_ARGS__)
#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define FOR4_R(i, a, b, c) for (ll i = (b)-1; i >= ll(a); i -= (c))
#define overload4(a, b, c, d, e, ...) e
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) \
  overload4(__VA_ARGS__, FOR4_R, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) for (ll t = s; t >= 0; t = (t == 0 ? -1 : (t - 1) & s))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

template <typename T>
T SUM(vector<T> &A) {
  T sum = T(0);
  for (auto &&a: A) sum += a;
  return sum;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T, typename U>
T ceil(T x, U y) {
  return (x > 0 ? (x + y - 1) / y : x / y);
}

template <typename T, typename U>
T floor(T x, U y) {
  return (x > 0 ? x / y : (x - y + 1) / y);
}

template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

ll binary_search(function<bool(ll)> check, ll ok, ll ng) {
  assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    if (check(x))
      ok = x;
    else
      ng = x;
  }
  return ok;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

vi s_to_vi(const string &S, char first_char) {
  vi A(S.size());
  FOR(i, S.size()) { A[i] = S[i] - first_char; }
  return A;
}

template <typename T>
vector<T> cumsum(vector<T> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

template <typename CNT, typename T>
vc<CNT> bincount(const vc<T> &A, int size) {
  vc<CNT> C(size);
  for (auto &&x: A) { ++C[x]; }
  return C;
}

template <typename T>
vector<int> argsort(const vector<T> &A) {
  // stable
  vector<int> ids(A.size());
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return A[i] < A[j] || (A[i] == A[j] && i < j); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  int n = len(A);
  assert(len(I) == n);
  vc<T> B(n);
  FOR(i, n) B[i] = A[I[i]];
  return B;
}
#line 1 "/home/maspy/compro/library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>

namespace detail {
template <typename T, decltype(&T::is_modint) = &T::is_modint>
std::true_type check_value(int);
template <typename T>
std::false_type check_value(long);
} // namespace detail

template <typename T>
struct is_modint : decltype(detail::check_value<T>(0)) {};
template <typename T>
using is_modint_t = enable_if_t<is_modint<T>::value>;
template <typename T>
using is_not_modint_t = enable_if_t<!is_modint<T>::value>;

struct Scanner {
  FILE *fp;
  char line[(1 << 15) + 1];
  size_t st = 0, ed = 0;
  void reread() {
    memmove(line, line + st, ed - st);
    ed -= st;
    st = 0;
    ed += fread(line + ed, 1, (1 << 15) - ed, fp);
    line[ed] = '\0';
  }
  bool succ() {
    while (true) {
      if (st == ed) {
        reread();
        if (st == ed) return false;
      }
      while (st != ed && isspace(line[st])) st++;
      if (st != ed) break;
    }
    if (ed - st <= 50) {
      bool sep = false;
      for (size_t i = st; i < ed; i++) {
        if (isspace(line[i])) {
          sep = true;
          break;
        }
      }
      if (!sep) reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    while (true) {
      size_t sz = 0;
      while (st + sz < ed && !isspace(line[st + sz])) sz++;
      ref.append(line + st, sz);
      st += sz;
      if (!sz || st != ed) break;
      reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    bool neg = false;
    if (line[st] == '-') {
      neg = true;
      st++;
    }
    ref = T(0);
    while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
    if (neg) ref = -ref;
    return true;
  }
  template <class T, is_modint_t<T> * = nullptr>
  bool read_single(T &ref) {
    long long val = 0;
    bool f = read_single(val);
    ref = T(val);
    return f;
  }
  bool read_single(double &ref) {
    string s;
    if (!read_single(s)) return false;
    ref = std::stod(s);
    return true;
  }
  bool read_single(char &ref) {
    string s;
    if (!read_single(s) || s.size() != 1) return false;
    ref = s[0];
    return true;
  }
  template <class T>
  bool read_single(vector<T> &ref) {
    for (auto &d: ref) {
      if (!read_single(d)) return false;
    }
    return true;
  }
  template <class T, class U>
  bool read_single(pair<T, U> &p) {
    return (read_single(p.first) && read_single(p.second));
  }
  template <class A, class B, class C>
  bool read_single(tuple<A, B, C> &p) {
    return (read_single(get<0>(p)) && read_single(get<1>(p))
            && read_single(get<2>(p)));
  }
  template <class A, class B, class C, class D>
  bool read_single(tuple<A, B, C, D> &p) {
    return (read_single(get<0>(p)) && read_single(get<1>(p))
            && read_single(get<2>(p)) && read_single(get<3>(p)));
  }
  void read() {}
  template <class H, class... T>
  void read(H &h, T &... t) {
    bool f = read_single(h);
    assert(f);
    read(t...);
  }
  Scanner(FILE *fp) : fp(fp) {}
};

struct Printer {
  Printer(FILE *_fp) : fp(_fp) {}
  ~Printer() { flush(); }

  static constexpr size_t SIZE = 1 << 15;
  FILE *fp;
  char line[SIZE], small[50];
  size_t pos = 0;
  void flush() {
    fwrite(line, 1, pos, fp);
    pos = 0;
  }
  void write(const char &val) {
    if (pos == SIZE) flush();
    line[pos++] = val;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  void write(T val) {
    if (pos > (1 << 15) - 50) flush();
    if (val == 0) {
      write('0');
      return;
    }
    if (val < 0) {
      write('-');
      val = -val; // todo min
    }
    size_t len = 0;
    while (val) {
      small[len++] = char(0x30 | (val % 10));
      val /= 10;
    }
    for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
    pos += len;
  }
  void write(const string &s) {
    for (char c: s) write(c);
  }
  void write(const char *s) {
    size_t len = strlen(s);
    for (size_t i = 0; i < len; i++) write(s[i]);
  }
  void write(const double &x) {
    ostringstream oss;
    oss << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  void write(const long double &x) {
    ostringstream oss;
    oss << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  template <class T, is_modint_t<T> * = nullptr>
  void write(T &ref) {
    write(ref.val);
  }
  template <class T>
  void write(const vector<T> &val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  template <class T, class U>
  void write(const pair<T, U> &val) {
    write(val.first);
    write(' ');
    write(val.second);
  }
  template <class A, class B, class C>
  void write(const tuple<A, B, C> &val) {
    auto &[a, b, c] = val;
    write(a), write(' '), write(b), write(' '), write(c);
  }
  template <class A, class B, class C, class D>
  void write(const tuple<A, B, C, D> &val) {
    auto &[a, b, c, d] = val;
    write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d);
  }
  template <class A, class B, class C, class D, class E>
  void write(const tuple<A, B, C, D, E> &val) {
    auto &[a, b, c, d, e] = val;
    write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d), write(' '), write(e);
  }
  template <class A, class B, class C, class D, class E, class F>
  void write(const tuple<A, B, C, D, E, F> &val) {
    auto &[a, b, c, d, e, f] = val;
    write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d), write(' '), write(e), write(' '), write(f);
  }
  template <class T, size_t S>
  void write(const array<T, S> &val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  void write(i128 val) {
    string s;
    bool negative = 0;
    if(val < 0){
      negative = 1;
      val = -val;
    }
    while (val) {
      s += '0' + int(val % 10);
      val /= 10;
    }
    if(negative) s += "-";
    reverse(all(s));
    if (len(s) == 0) s = "0";
    write(s);
  }
};

Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);

void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  printer.write(head);
  if (sizeof...(Tail)) printer.write(' ');
  print(forward<Tail>(tail)...);
}

void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
  scanner.read(head);
  read(tail...);
}

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)      \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 2 "/home/maspy/compro/library/graph/base.hpp"

template <typename T>
struct Edge {
  int frm, to;
  T cost;
  int id;
};

template <typename T = int, bool directed = false>
struct Graph {
  int N, M;
  using cost_type = T;
  using edge_type = Edge<T>;
  vector<edge_type> edges;
  vector<int> indptr;
  vector<edge_type> csr_edges;
  bool prepared;

  class OutgoingEdges {
  public:
    OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}

    const edge_type* begin() const {
      if (l == r) { return 0; }
      return &G->csr_edges[l];
    }

    const edge_type* end() const {
      if (l == r) { return 0; }
      return &G->csr_edges[r];
    }

  private:
    int l, r;
    const Graph* G;
  };

  bool is_prepared() { return prepared; }
  constexpr bool is_directed() { return directed; }

  Graph() : N(0), M(0), prepared(0) {}
  Graph(int N) : N(N), M(0), prepared(0) {}

  void add(int frm, int to, T cost = 1, int i = -1) {
    assert(!prepared);
    assert(0 <= frm && 0 <= to && to < N);
    if (i == -1) i = M;
    auto e = edge_type({frm, to, cost, i});
    edges.eb(e);
    ++M;
  }

  // wt, off
  void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }

  void read_graph(int M, bool wt = false, int off = 1) {
    FOR(M) {
      INT(a, b);
      a -= off, b -= off;
      if (!wt) {
        add(a, b);
      } else {
        T c;
        read(c);
        add(a, b, c);
      }
    }
    build();
  }

  void read_parent(int off = 1) {
    FOR3(v, 1, N) {
      INT(p);
      p -= off;
      add(p, v);
    }
    build();
  }

  void build() {
    assert(!prepared);
    prepared = true;
    indptr.assign(N + 1, 0);
    for (auto&& e: edges) {
      indptr[e.frm + 1]++;
      if (!directed) indptr[e.to + 1]++;
    }
    FOR(v, N) indptr[v + 1] += indptr[v];
    auto counter = indptr;
    csr_edges.resize(indptr.back() + 1);
    for (auto&& e: edges) {
      csr_edges[counter[e.frm]++] = e;
      if (!directed)
        csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
    }
  }

  OutgoingEdges operator[](int v) const {
    assert(prepared);
    return {this, indptr[v], indptr[v + 1]};
  }

  void debug() {
    print("Graph");
    if (!prepared) {
      print("frm to cost id");
      for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
    } else {
      print("indptr", indptr);
      print("frm to cost id");
      FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
    }
  }
};
#line 2 "/home/maspy/compro/library/graph/biconnected_component.hpp"

/*
孤立点は、辺のない component で、block になる。関節点ではない。
block cut treeの頂点番号:
[0, n_block):block (辺の同値類)
[n_block, n_block + n_cut):cut (関節点)
*/
template <typename GT>
struct Biconnected_Component {
  GT& G;
  vc<pair<int, int>> BCT_edges;
  int n_block, n_cut;
  vc<vc<int>> comp;
  vc<int> BCT_idx_edge;
  vc<int> BCT_idx_vertex;

  Biconnected_Component(GT& G) : G(G) {
    auto [ord, low] = calculate_lowlink();
    calculate_bcc(ord, low);
    build_bct();
  }

  int BCT_idx_v(int v) { return BCT_idx_vertex[v]; }
  int BCT_idx_e(int eid) { return BCT_idx_edge[eid]; }
  Graph<int> BCT() {
    Graph<int> bct(n_block + n_cut);
    for (auto&& [a, b]: BCT_edges) bct.add(a, b);
    bct.build();
    return bct;
  }
  bool is_articulation(int v) { return BCT_idx_v(v) >= n_block; }

private:
  void build_bct() {
    int n = G.N;
    vvc<int> nbd(n);
    n_block = len(comp);
    n_cut = 0;
    BCT_idx_edge.resize(G.M);
    BCT_idx_vertex.resize(G.N);

    auto add = [&](int v, int c) -> void {
      if (len(nbd[v]) && nbd[v].back() == c) return;
      nbd[v].eb(c);
    };

    FOR(c, len(comp)) {
      for (auto&& eid: comp[c]) {
        BCT_idx_edge[eid] = c;
        auto& e = G.edges[eid];
        add(e.frm, c);
        add(e.to, c);
      }
    }

    FOR(v, n) {
      if (len(nbd[v]) == 0) {
        // 孤立点は辺のない block
        BCT_idx_vertex[v] = n_block++;
      }
    }
    comp.resize(n_block);

    FOR(v, n) {
      if (len(nbd[v]) >= 2) {
        BCT_idx_vertex[v] = n_block + n_cut;
        for (auto&& c: nbd[v]) { BCT_edges.eb(n_block + n_cut, c); }
        n_cut++;
      }
      elif (len(nbd[v]) == 1) {
        int c = nbd[v][0];
        BCT_idx_vertex[v] = c;
      }
    }
  }

  pair<vc<int>, vc<int>> calculate_lowlink() {
    int n = G.N;
    vc<bool> used(n);
    vc<int> low(n), ord(n);
    int k = 0;
    auto dfs = [&](auto self, int v, int eid) -> void {
      used[v] = 1;
      low[v] = ord[v] = k++;
      for (auto&& e: G[v]) {
        if (e.id == eid) continue;
        if (!used[e.to]) {
          self(self, e.to, e.id);
          chmin(low[v], low[e.to]);
        } else {
          chmin(low[v], ord[e.to]);
        }
      }
    };
    FOR(v, n) if (!used[v]) dfs(dfs, v, -1);
    return {ord, low};
  }

  void calculate_bcc(vc<int>& ord, vc<int>& low) {
    int n = G.N;
    vc<bool> used(n);
    vc<int> buf;
    auto dfs = [&](auto self, int v, int eid) -> void {
      used[v] = 1;
      for (auto&& e: G[v]) {
        if (e.id == eid) continue;
        if (!used[e.to] || ord[e.to] < ord[v]) buf.eb(e.id);
        if (used[e.to]) continue;
        self(self, e.to, e.id);
        if (low[e.to] < ord[v]) continue;
        vc<int> edges;
        while (1) {
          edges.eb(buf.back());
          buf.pop_back();
          if (edges.back() == e.id) break;
        }
        comp.eb(edges);
      }
    };
    FOR(v, n) if (!used[v]) dfs(dfs, v, -1);
  }
};
#line 2 "/home/maspy/compro/library/alg/group_add.hpp"
template <class X>
struct Group_Add {
  using value_type = X;
  static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
  static constexpr X inverse(const X &x) noexcept { return -x; }
  static constexpr X power(const X &x, ll n) noexcept { return n * x; }
  static constexpr X unit() { return X(0); }
  static constexpr bool commute = true;
};
#line 3 "/home/maspy/compro/library/ds/fenwick.hpp"

template <typename AbelGroup>
struct FenwickTree {
  using E = typename AbelGroup::value_type;
  int n;
  vector<E> dat;
  E total;

  FenwickTree() : FenwickTree(0) {}
  FenwickTree(int n) : n(n), total(AbelGroup::unit()) {
    assert(AbelGroup::commute);
    dat.assign(n, AbelGroup::unit());
  }
  FenwickTree(vc<E> v) : n(len(v)), total(AbelGroup::unit()) {
    assert(AbelGroup::commute);
    FOR(i, n) total = AbelGroup::op(total, v[i]);
    dat = v;
    FOR3(i, 1, n + 1) {
      int j = i + (i & -i);
      if (j <= n) dat[j - 1] = AbelGroup::op(dat[i - 1], dat[j - 1]);
    }
  }

  void reset(){
    total = AbelGroup::unit();
    dat.assign(n, AbelGroup::unit());
  }

  E sum(int k) {
    E ret = AbelGroup::unit();
    for (; k > 0; k -= k & -k) ret = AbelGroup::op(ret, dat[k - 1]);
    return ret;
  }

  E sum(int L, int R) {
    E pos = AbelGroup::unit();
    while (L < R) {
      pos = AbelGroup::op(pos, dat[R - 1]);
      R -= R & -R;
    }
    E neg = AbelGroup::unit();
    while (R < L) {
      neg = AbelGroup::op(neg, dat[L - 1]);
      L -= L & -L;
    }
    return AbelGroup::op(pos, AbelGroup::inverse(neg));
  }

  E sum_all() { return total; }

  void add(int k, E x) {
    total = AbelGroup::op(total, x);
    for (++k; k <= n; k += k & -k) dat[k - 1] = AbelGroup::op(dat[k - 1], x);
  }

  template <class F>
  int max_right(F& check) {
    assert(check(E(0)));
    ll i = 0;
    E s = AbelGroup::unit();
    int k = 1;
    int N = len(dat) + 1;
    while (2 * k < N) k *= 2;
    while (k) {
      if (i + k < N && check(AbelGroup::op(s, dat[i + k - 1]))) {
        i += k;
        s = AbelGroup::op(s, dat[i - 1]);
      }
      k >>= 1;
    }
    return i;
  }

  int find_kth(E k) {
    auto check = [&](E x) -> bool { return x <= k; };
    return max_right(check);
  }

  void debug() { print("fenwick", dat); }
};
#line 3 "/home/maspy/compro/library/graph/hld.hpp"

/*
HL分解。O(N) 時間構築。
LCA, LA などは O(logN) 時間。
木以外、非連結でも使えるようにした。dfs順序や親がとれる。
*/
template <typename Graph>
struct HLD {
  Graph &G;
  using Graph_type = Graph;
  using WT = typename Graph::cost_type;
  int N;
  vector<int> LID, RID, head, V, parent, root;
  vc<int> depth;
  vc<WT> depth_weighted;
  vector<bool> in_tree;

  HLD(Graph &G, int r = -1)
      : G(G),
        N(G.N),
        LID(G.N),
        RID(G.N),
        head(G.N, r),
        V(G.N),
        parent(G.N, -1),
        depth(G.N, -1),
        depth_weighted(G.N, 0),
        root(G.N, -1),
        in_tree(G.M, 0) {
    assert(G.is_prepared());
    int t1 = 0;
    if (r != -1) {
      dfs_sz(r, -1);
      dfs_hld(r, t1);
    } else {
      FOR(r, N) if (parent[r] == -1) {
        head[r] = r;
        dfs_sz(r, -1);
        dfs_hld(r, t1);
      }
    }
    for (auto &&v: V) root[v] = (parent[v] == -1 ? v : root[parent[v]]);
  }

  void dfs_sz(int v, int p) {
    auto &sz = RID;
    parent[v] = p;
    depth[v] = (p == -1 ? 0 : depth[p] + 1);
    sz[v] = 1;
    int l = G.indptr[v], r = G.indptr[v + 1];
    auto &csr = G.csr_edges;
    // 使う辺があれば先頭にする
    FOR3_R(i, l, r - 1) {
      if (depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]);
    }
    int hld_sz = 0;
    for (int i = l; i < r; ++i) {
      auto e = csr[i];
      if (depth[e.to] != -1) continue;
      in_tree[e.id] = 1;
      depth_weighted[e.to] = depth_weighted[v] + e.cost;
      dfs_sz(e.to, v);
      sz[v] += sz[e.to];
      if (chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); }
    }
  }

  void dfs_hld(int v, int &times) {
    LID[v] = times++;
    RID[v] += LID[v];
    V[LID[v]] = v;
    bool heavy = true;
    for (auto &&e: G[v]) {
      if (!in_tree[e.id] || depth[e.to] <= depth[v]) continue;
      head[e.to] = (heavy ? head[v] : e.to);
      heavy = false;
      dfs_hld(e.to, times);
    }
  }

  int e_to_v(int eid) {
    auto e = G.edges[eid];
    return (parent[e.frm] == e.to ? e.frm : e.to);
  }

  int ELID(int v) { return 2 * LID[v] - depth[v]; }
  int ERID(int v) { return 2 * RID[v] - depth[v] - 1; }

  /* k: 0-indexed */
  int LA(int v, int k) {
    while (1) {
      int u = head[v];
      if (LID[v] - k >= LID[u]) return V[LID[v] - k];
      k -= LID[v] - LID[u] + 1;
      v = parent[u];
    }
  }

  int LCA(int u, int v) {
    for (;; v = parent[head[v]]) {
      if (LID[u] > LID[v]) swap(u, v);
      if (head[u] == head[v]) return u;
    }
  }

  int lca(int u, int v) { return LCA(u, v); }
  int la(int u, int v) { return LA(u, v); }

  int subtree_size(int v) { return RID[v] - LID[v]; }

  int dist(int a, int b) {
    int c = LCA(a, b);
    return depth[a] + depth[b] - 2 * depth[c];
  }

  WT dist(int a, int b, bool weighted) {
    assert(weighted);
    int c = LCA(a, b);
    return depth_weighted[a] + depth_weighted[b] - 2 * depth_weighted[c];
  }

  bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; }

  int move(int a, int b) {
    assert(a != b);
    return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]);
  }

  vc<int> collect_child(int v) {
    vc<int> res;
    for (auto &&e: G[v])
      if (e.to != parent[v]) res.eb(e.to);
    return res;
  }

  vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) {
    // [始点, 終点] の"閉"区間列。
    vc<pair<int, int>> up, down;
    while (1) {
      if (head[u] == head[v]) break;
      if (LID[u] < LID[v]) {
        down.eb(LID[head[v]], LID[v]);
        v = parent[head[v]];
      } else {
        up.eb(LID[u], LID[head[u]]);
        u = parent[head[u]];
      }
    }
    if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]);
    elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge);
    reverse(all(down));
    up.insert(up.end(), all(down));
    return up;
  }

  void debug() {
    print("V", V);
    print("LID", LID);
    print("RID", RID);
    print("parent", parent);
    print("depth", depth);
    print("head", head);
    print("in_tree(edge)", in_tree);
    print("root", root);
  }
};
#line 3 "/home/maspy/compro/library/graph/treeabelgroup.hpp"

template <typename HLD, typename AbelGroup, bool edge = false,
          bool path_query = true, bool subtree_query = false>
struct TreeAbelGroup {
  using X = typename AbelGroup::value_type;
  HLD &hld;
  int N;
  FenwickTree<AbelGroup> bit, bit_subtree;

  TreeAbelGroup(HLD &hld) : hld(hld), N(hld.N) {
    if (path_query) { bit = FenwickTree<AbelGroup>(2 * N); }
    if (subtree_query) { bit_subtree = FenwickTree<AbelGroup>(N); }
  }

  TreeAbelGroup(HLD &hld, vc<X> dat) : hld(hld), N(hld.N) {
    if (path_query) {
      vc<X> bit_raw(2 * N);
      if (!edge) {
        assert(len(dat) == N);
        FOR(v, N) {
          bit_raw[hld.ELID(v)] = dat[v];
          bit_raw[hld.ERID(v)] = AbelGroup::inverse(dat[v]);
        }
      } else {
        assert(len(dat) == N - 1);
        FOR(e, N - 1) {
          int v = hld.e_to_v(e);
          bit_raw[hld.ELID(v)] = dat[e];
          bit_raw[hld.ERID(v)] = AbelGroup::inverse(dat[e]);
        }
      }
      bit = FenwickTree<AbelGroup>(bit_raw);
    }
    if (subtree_query) {
      vc<X> bit_raw(N);
      if (!edge) {
        assert(len(dat) == N);
        FOR(v, N) bit_raw[hld.LID[v]] = dat[v];
      } else {
        assert(len(dat) == N - 1);
        FOR(e, N - 1) {
          int v = hld.e_to_v(e);
          bit_raw[hld.LID[v]] = dat[e];
        }
      }
      bit_subtree = FenwickTree<AbelGroup>(bit_raw);
    }
  }

  void add(int i, X x) {
    int v = (edge ? hld.e_to_v(i) : i);
    if (path_query) {
      X inv_x = AbelGroup::inverse(x);
      bit.add(hld.ELID(v), x);
      bit.add(hld.ERID(v), inv_x);
    }
    if (subtree_query) bit_subtree.add(hld.LID[v], x);
  }

  X prod_path(int frm, int to) {
    assert(path_query);
    int lca = hld.LCA(frm, to);
    // [frm, lca)
    X x1 = bit.sum(hld.ELID(lca) + 1, hld.ELID(frm) + 1);
    // edge なら (lca, to]、vertex なら [lca, to]
    X x2 = bit.sum(hld.ELID(lca) + edge, hld.ELID(to) + 1);
    return AbelGroup::op(x1, x2);
  }

  X prod_subtree(int u) {
    assert(subtree_query);
    int l = hld.LID[u], r = hld.RID[u];
    return bit_subtree.sum(l + edge, r);
  }

  void debug() {
    hld.debug();
    bit.debug();
    bit_subtree.debug();
  }

  void doc() {
    print("EulerTour + FenwickTree。");
    print("逆元を利用して、パスクエリを O(logN) 時間で行う。");
    print("部分木クエリ O(logN) 時間、パスクエリ O(logN) 時間。");
  }
};
#line 6 "main.cpp"

void solve() {
  LL(N, M);
  Graph<int> G(N);
  G.read_graph(M);
  Biconnected_Component<decltype(G)> BC(G);

  auto T = BC.BCT();
  HLD hld(T);

  vc<int> dat(T.N);
  FOR(v, N) if (BC.is_articulation(v)) { dat[BC.BCT_idx_v(v)]++; }
  TreeAbelGroup<decltype(hld), Group_Add<int>, 0, 1, 0> TA(hld, dat);

  LL(Q);
  FOR(Q) {
    LL(x, y);
    --x, --y;
    auto a = BC.BCT_idx_v(x);
    auto b = BC.BCT_idx_v(y);
    if (a == b) {
      print(0);
      continue;
    }
    ll k = TA.prod_path(a, b);
    if (BC.is_articulation(x)) --k;
    if (BC.is_articulation(y)) --k;
    print(k);
  }
}

signed main() {
  cin.tie(nullptr);
  ios::sync_with_stdio(false);
  cout << setprecision(15);

  ll T = 1;
  // LL(T);
  FOR(T) solve();

  return 0;
}
0