結果

問題 No.1959 Prefix MinMax
ユーザー cotton_fn_cotton_fn_
提出日時 2022-05-28 12:38:39
言語 Rust
(1.83.0 + proconio)
結果
RE  
実行時間 -
コード長 20,852 bytes
コンパイル時間 13,135 ms
コンパイル使用メモリ 396,148 KB
実行使用メモリ 25,476 KB
平均クエリ数 42.28
最終ジャッジ日時 2024-09-20 21:24:58
合計ジャッジ時間 19,212 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 22 ms
24,580 KB
testcase_01 AC 23 ms
24,964 KB
testcase_02 AC 19 ms
24,964 KB
testcase_03 AC 21 ms
25,220 KB
testcase_04 AC 22 ms
24,836 KB
testcase_05 AC 22 ms
25,220 KB
testcase_06 AC 23 ms
24,836 KB
testcase_07 RE -
testcase_08 RE -
testcase_09 RE -
testcase_10 RE -
testcase_11 RE -
testcase_12 RE -
testcase_13 RE -
testcase_14 RE -
testcase_15 RE -
testcase_16 RE -
testcase_17 RE -
testcase_18 RE -
testcase_19 RE -
testcase_20 RE -
testcase_21 RE -
testcase_22 RE -
testcase_23 RE -
testcase_24 RE -
testcase_25 RE -
testcase_26 RE -
testcase_27 RE -
testcase_28 RE -
testcase_29 RE -
testcase_30 AC 56 ms
25,220 KB
testcase_31 RE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#![allow(unused_imports)]
use input::*;
use std::{
    collections::*,
    io::{self, BufWriter, Write},
};
fn run<I: Input, O: Write>(mut ss: I, mut out: O) {
    use random::*;
    let t: i32 = ss.parse();
    let mut rng = Xoshiro::seed_from_u64(1959);
    for _ in 0..t {
        let n: usize = ss.parse();
        let b: Vec<u32> = (0..n - 1)
            .map(|_| loop {
                let x: u32 = rng.range(0, 1 << 10);
                if x.count_ones() == 5 {
                    break x;
                }
            })
            .collect();
        let mut ans = vec![0; n];
        for q in 0..10 {
            w!(out, "?");
            for &b in &b {
                w!(out, " {}", (b >> q) & 1);
            }
            wln!(out);
            out.flush().unwrap();
            let mut prev = 0;
            for (a, ans) in ss.seq::<usize>().take(n).zip(&mut ans) {
                if a != prev {
                    *ans = a;
                }
                prev = a;
            }
        }
        w!(out, "!");
        for ans in ans {
            w!(out, " {}", ans);
        }
        wln!(out);
        out.flush().unwrap();
    }
}
fn main() {
    let stdin = io::stdin();
    let ss = SplitWs::new(stdin.lock());
    let stdout = io::stdout();
    let out = BufWriter::new(stdout.lock());
    run(ss, out);
}
pub mod random {
    mod pcg {
        use super::{RngCore, SeedableRng};
        #[doc = " PCG-XSH-RR"]
        #[derive(Clone, Copy, PartialEq, Eq, Debug)]
        pub struct Pcg(u64);
        const MUL: u64 = 5129263795064623965;
        const INC: u64 = 4280768313201238837;
        impl SeedableRng for Pcg {
            fn seed_from_u64(seed: u64) -> Self {
                Self(seed.wrapping_add(INC))
            }
        }
        impl RngCore for Pcg {
            fn next_u32(&mut self) -> u32 {
                let mut x = self.0;
                self.0 = x.wrapping_mul(MUL).wrapping_add(INC);
                x ^= x >> 18;
                ((x >> 27) as u32).rotate_right((x >> 59) as u32)
            }
            fn next_u64(&mut self) -> u64 {
                (self.next_u32() as u64) << 32 | self.next_u32() as u64
            }
        }
    }
    mod xoshiro {
        use super::{RngCore, SeedableRng};
        #[doc = " <https://xoshiro.di.unimi.it/xoshiro256plusplus.c>"]
        #[derive(Clone, Copy, PartialEq, Eq, Debug)]
        pub struct Xoshiro([u64; 4]);
        impl Xoshiro {
            pub fn from_seed(seed: [u64; 4]) -> Self {
                Self(seed)
            }
        }
        impl SeedableRng for Xoshiro {
            fn seed_from_u64(seed: u64) -> Self {
                let mut sm = SplitMix::seed_from_u64(seed);
                let mut state = [0; 4];
                for s in &mut state {
                    *s = sm.next_u64();
                }
                Self::from_seed(state)
            }
        }
        impl RngCore for Xoshiro {
            fn next_u32(&mut self) -> u32 {
                (self.next_u64() >> 32) as u32
            }
            fn next_u64(&mut self) -> u64 {
                let res = (self.0[0].wrapping_add(self.0[3]))
                    .rotate_left(23)
                    .wrapping_add(self.0[0]);
                let t = self.0[1] << 17;
                self.0[2] ^= self.0[0];
                self.0[3] ^= self.0[1];
                self.0[1] ^= self.0[2];
                self.0[0] ^= self.0[3];
                self.0[2] ^= t;
                self.0[3] = self.0[3].rotate_left(45);
                res
            }
        }
        #[doc = " <https://xoshiro.di.unimi.it/splitmix64.c>"]
        #[derive(Clone, Copy, PartialEq, Eq, Debug)]
        pub struct SplitMix(u64);
        impl SeedableRng for SplitMix {
            fn seed_from_u64(seed: u64) -> Self {
                Self(seed)
            }
        }
        impl RngCore for SplitMix {
            fn next_u32(&mut self) -> u32 {
                (self.next_u64() >> 32) as u32
            }
            fn next_u64(&mut self) -> u64 {
                self.0 = self.0.wrapping_add(0x9e3779b97f4a7c15);
                let mut z = self.0;
                z = (z ^ (z >> 30)).wrapping_mul(0xbf58476d1ce4e5b9);
                z = (z ^ (z >> 27)).wrapping_mul(0x94d049bb133111eb);
                z ^ (z >> 31)
            }
        }
    }
    pub use self::pcg::Pcg;
    pub use self::xoshiro::*;
    pub trait RngCore {
        fn next_u32(&mut self) -> u32;
        fn next_u64(&mut self) -> u64;
    }
    pub trait Rng: RngCore {
        fn gen<T: Sample>(&mut self) -> T {
            T::sample(self)
        }
        fn range<T: Uniform>(&mut self, l: T, r: T) -> T {
            T::range(self, l, r)
        }
        fn range_inclusive<T: Uniform>(&mut self, l: T, r: T) -> T {
            T::range_inclusive(self, l, r)
        }
        fn gen_bool(&mut self, p: f64) -> bool {
            if p >= 1. {
                return true;
            }
            self.next_u64() < (2.0f64.powi(64) * p) as u64
        }
        fn open01<T: SampleFloat>(&mut self) -> T {
            T::open01(self)
        }
        fn standard_normal<T: SampleFloat>(&mut self) -> T {
            T::standard_normal(self)
        }
        fn normal<T: SampleFloat>(&mut self, mean: T, sd: T) -> T {
            T::normal(self, mean, sd)
        }
        fn exp<T: SampleFloat>(&mut self, lambda: T) -> T {
            T::exp(self, lambda)
        }
        fn shuffle<T>(&mut self, a: &mut [T]) {
            for i in (1..a.len()).rev() {
                a.swap(self.range_inclusive(0, i), i);
            }
        }
        fn partial_shuffle<'a, T>(
            &mut self,
            a: &'a mut [T],
            n: usize,
        ) -> (&'a mut [T], &'a mut [T]) {
            let n = n.min(a.len());
            for i in 0..n {
                a.swap(i, self.range(i, a.len()));
            }
            a.split_at_mut(n)
        }
        fn choose<'a, T>(&mut self, a: &'a [T]) -> &'a T {
            assert!(!a.is_empty());
            &a[self.range(0, a.len())]
        }
        fn choose_mut<'a, T>(&mut self, a: &'a mut [T]) -> &'a mut T {
            assert!(!a.is_empty());
            &mut a[self.range(0, a.len())]
        }
    }
    impl<T: RngCore> Rng for T {}
    pub trait Sample {
        fn sample<T: Rng + ?Sized>(rand: &mut T) -> Self;
    }
    pub trait Uniform {
        fn range<T: Rng + ?Sized>(rand: &mut T, l: Self, r: Self) -> Self;
        fn range_inclusive<T: Rng + ?Sized>(rand: &mut T, l: Self, r: Self) -> Self;
    }
    pub trait SampleFloat {
        fn open01<T: Rng + ?Sized>(rand: &mut T) -> Self;
        fn standard_normal<T: Rng + ?Sized>(rand: &mut T) -> Self;
        fn normal<T: Rng + ?Sized>(rand: &mut T, mean: Self, sd: Self) -> Self;
        fn exp<T: Rng + ?Sized>(rand: &mut T, lambda: Self) -> Self;
    }
    macro_rules ! int_impl { ($ ($ type : ident) ,*) => { $ (impl Sample for $ type { fn sample < T : Rng + ? Sized > (rand : & mut T) -> Self { if 8 * std :: mem :: size_of ::< Self > () <= 32 { rand . next_u32 () as $ type } else { rand . next_u64 () as $ type } } } impl Uniform for $ type { fn range < T : Rng + ? Sized > (rand : & mut T , l : Self , r : Self) -> Self { assert ! (l < r) ; Self :: range_inclusive (rand , l , r - 1) } fn range_inclusive < T : Rng + ? Sized > (rand : & mut T , l : Self , r : Self) -> Self { assert ! (l <= r) ; if 8 * std :: mem :: size_of ::< Self > () <= 32 { int_impl ! (range_inclusive $ type , u32 , rand , l , r) ; } else { int_impl ! (range_inclusive $ type , u64 , rand , l , r) ; } } }) * } ; (range_inclusive $ type : ident , $ via : ident , $ rand : ident , $ l : ident , $ r : ident) => { let d = ($ r - $ l) as $ via ; let mask = if d == 0 { 0 } else { ! 0 >> d . leading_zeros () } ; loop { let x = $ rand . gen ::<$ via > () & mask ; if x <= d { return $ l + x as $ type ; } } } }
    int_impl!(i8, u8, i16, u16, i32, u32, i64, u64, isize, usize);
    macro_rules ! float_impl { ($ ($ fty : ident , $ uty : ident , $ fract : expr , $ exp_bias : expr) ;*) => { $ (impl Sample for $ fty { fn sample < T : Rng + ? Sized > (rand : & mut T) -> Self { let x : $ uty = rand . gen () ; let bits = 8 * std :: mem :: size_of ::<$ fty > () ; let prec = $ fract + 1 ; let scale = 1. / ((1 as $ uty) << prec) as $ fty ; scale * (x >> (bits - prec)) as $ fty } } impl Uniform for $ fty { fn range < T : Rng + ? Sized > (rand : & mut T , l : Self , r : Self) -> Self { assert ! (l <= r) ; l + Self :: sample (rand) / (r - l) } fn range_inclusive < T : Rng + ? Sized > (rand : & mut T , l : Self , r : Self) -> Self { assert ! (l <= r) ; Self :: range (rand , l , r) } } impl SampleFloat for $ fty { fn open01 < T : Rng + ? Sized > (rand : & mut T) -> Self { let x : $ uty = rand . gen () ; let bits = 8 * std :: mem :: size_of ::<$ fty > () ; let exp = $ exp_bias << $ fract ; $ fty :: from_bits (exp | (x >> (bits - $ fract))) - (1. - std ::$ fty :: EPSILON / 2.) } fn standard_normal < T : Rng + ? Sized > (rand : & mut T) -> Self { let r = (- 2. * (1. - Self :: sample (rand)) . ln ()) . sqrt () ; let c = (2. * std ::$ fty :: consts :: PI * Self :: sample (rand)) . cos () ; r * c } fn normal < T : Rng + ? Sized > (rand : & mut T , mean : Self , sd : Self) -> Self { sd * Self :: standard_normal (rand) + mean } fn exp < T : Rng + ? Sized > (rand : & mut T , lambda : Self) -> Self { - 1. / lambda * Self :: open01 (rand) . ln () } }) * } }
    float_impl ! (f32 , u32 , 23 , 127 ; f64 , u64 , 52 , 1023);
    impl Sample for bool {
        fn sample<T: Rng + ?Sized>(rand: &mut T) -> Self {
            (rand.next_u32() as i32) >= 0
        }
    }
    pub trait SeedableRng: Sized {
        fn seed_from_u64(seed: u64) -> Self;
        fn from_time() -> Self {
            use std::time::SystemTime;
            let dur = SystemTime::now()
                .duration_since(SystemTime::UNIX_EPOCH)
                .unwrap();
            let seed = dur.as_micros() as u64;
            Self::seed_from_u64(seed)
        }
    }
}
pub mod input {
    use std::{
        io::{self, prelude::*},
        marker::PhantomData,
        mem,
    };
    pub trait Input {
        fn bytes(&mut self) -> &[u8];
        fn bytes_vec(&mut self) -> Vec<u8> {
            self.bytes().to_vec()
        }
        fn str(&mut self) -> &str {
            std::str::from_utf8(self.bytes()).unwrap()
        }
        fn parse<T: Parse>(&mut self) -> T {
            self.parse_with(DefaultParser)
        }
        fn parse_with<T>(&mut self, mut parser: impl Parser<T>) -> T {
            parser.parse(self)
        }
        fn seq<T: Parse>(&mut self) -> Seq<T, Self, DefaultParser> {
            self.seq_with(DefaultParser)
        }
        fn seq_with<T, P: Parser<T>>(&mut self, parser: P) -> Seq<T, Self, P> {
            Seq {
                input: self,
                parser,
                marker: PhantomData,
            }
        }
        fn collect<T: Parse, C: std::iter::FromIterator<T>>(&mut self, n: usize) -> C {
            self.seq().take(n).collect()
        }
    }
    impl<T: Input> Input for &mut T {
        fn bytes(&mut self) -> &[u8] {
            (**self).bytes()
        }
    }
    pub trait Parser<T> {
        fn parse<I: Input + ?Sized>(&mut self, s: &mut I) -> T;
    }
    impl<T, P: Parser<T>> Parser<T> for &mut P {
        fn parse<I: Input + ?Sized>(&mut self, s: &mut I) -> T {
            (**self).parse(s)
        }
    }
    pub trait Parse {
        fn parse<I: Input + ?Sized>(s: &mut I) -> Self;
    }
    pub struct DefaultParser;
    impl<T: Parse> Parser<T> for DefaultParser {
        fn parse<I: Input + ?Sized>(&mut self, s: &mut I) -> T {
            T::parse(s)
        }
    }
    pub struct Seq<'a, T, I: ?Sized, P> {
        input: &'a mut I,
        parser: P,
        marker: PhantomData<*const T>,
    }
    impl<'a, T, I: Input + ?Sized, P: Parser<T>> Iterator for Seq<'a, T, I, P> {
        type Item = T;
        #[inline]
        fn next(&mut self) -> Option<Self::Item> {
            Some(self.input.parse_with(&mut self.parser))
        }
        fn size_hint(&self) -> (usize, Option<usize>) {
            (!0, None)
        }
    }
    impl Parse for char {
        #[inline]
        fn parse<I: Input + ?Sized>(s: &mut I) -> Self {
            let s = s.bytes();
            debug_assert_eq!(s.len(), 1);
            *s.first().expect("zero length") as char
        }
    }
    macro_rules ! tuple { ($ ($ T : ident) ,*) => { impl <$ ($ T : Parse) ,*> Parse for ($ ($ T ,) *) { # [inline] # [allow (unused_variables)] # [allow (clippy :: unused_unit)] fn parse < I : Input + ? Sized > (s : & mut I) -> Self { ($ ($ T :: parse (s) ,) *) } } } ; }
    tuple!();
    tuple!(A);
    tuple!(A, B);
    tuple!(A, B, C);
    tuple!(A, B, C, D);
    tuple!(A, B, C, D, E);
    tuple!(A, B, C, D, E, F);
    tuple!(A, B, C, D, E, F, G);
    #[cfg(feature = "newer")]
    impl<T: Parse, const N: usize> Parse for [T; N] {
        fn parse<I: Input + ?Sized>(s: &mut I) -> Self {
            use std::{mem::MaybeUninit, ptr};
            struct Guard<T, const N: usize> {
                arr: [MaybeUninit<T>; N],
                i: usize,
            }
            impl<T, const N: usize> Drop for Guard<T, N> {
                fn drop(&mut self) {
                    unsafe {
                        ptr::drop_in_place(&mut self.arr[..self.i] as *mut _ as *mut [T]);
                    }
                }
            }
            let mut g = Guard::<T, N> {
                arr: unsafe { MaybeUninit::uninit().assume_init() },
                i: 0,
            };
            while g.i < N {
                g.arr[g.i] = MaybeUninit::new(s.parse());
                g.i += 1;
            }
            unsafe { mem::transmute_copy(&g.arr) }
        }
    }
    macro_rules! uint {
        ($ ty : ty) => {
            impl Parse for $ty {
                #[inline]
                fn parse<I: Input + ?Sized>(s: &mut I) -> Self {
                    let s = s.bytes();
                    s.iter().fold(0, |x, d| 10 * x + (0xf & d) as $ty)
                }
            }
        };
    }
    macro_rules! int {
        ($ ty : ty) => {
            impl Parse for $ty {
                #[inline]
                fn parse<I: Input + ?Sized>(s: &mut I) -> Self {
                    let f = |s: &[u8]| {
                        s.iter()
                            .fold(0 as $ty, |x, d| (10 * x).wrapping_add((0xf & d) as $ty))
                    };
                    let s = s.bytes();
                    if let Some((b'-', s)) = s.split_first() {
                        f(s).wrapping_neg()
                    } else {
                        f(s)
                    }
                }
            }
        };
    }
    macro_rules! float {
        ($ ty : ty) => {
            impl Parse for $ty {
                fn parse<I: Input + ?Sized>(s: &mut I) -> Self {
                    const POW: [$ty; 18] = [
                        1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13,
                        1e14, 1e15, 1e16, 1e17,
                    ];
                    let s = s.bytes();
                    let (minus, s) = if let Some((b'-', s)) = s.split_first() {
                        (true, s)
                    } else {
                        (false, s)
                    };
                    let (int, fract) = if let Some(p) = s.iter().position(|c| *c == b'.') {
                        (&s[..p], &s[p + 1..])
                    } else {
                        (s, &[][..])
                    };
                    let x = int
                        .iter()
                        .chain(fract)
                        .fold(0u64, |x, d| 10 * x + (0xf & *d) as u64);
                    let x = x as $ty;
                    let x = if minus { -x } else { x };
                    let exp = fract.len();
                    if exp == 0 {
                        x
                    } else if let Some(pow) = POW.get(exp) {
                        x / pow
                    } else {
                        x / (10.0 as $ty).powi(exp as i32)
                    }
                }
            }
        };
    }
    macro_rules! from_bytes {
        ($ ty : ty) => {
            impl Parse for $ty {
                #[inline]
                fn parse<I: Input + ?Sized>(s: &mut I) -> Self {
                    s.bytes().into()
                }
            }
        };
    }
    macro_rules! from_str {
        ($ ty : ty) => {
            impl Parse for $ty {
                #[inline]
                fn parse<I: Input + ?Sized>(s: &mut I) -> Self {
                    s.str().into()
                }
            }
        };
    }
    macro_rules ! impls { ($ m : ident , $ ($ ty : ty) ,*) => { $ ($ m ! ($ ty) ;) * } ; }
    impls!(uint, usize, u8, u16, u32, u64, u128);
    impls!(int, isize, i8, i16, i32, i64, i128);
    impls!(float, f32, f64);
    impls!(from_bytes, Vec<u8>, Box<[u8]>);
    impls!(from_str, String);
    #[derive(Clone)]
    pub struct SplitWs<T> {
        src: T,
        buf: Vec<u8>,
        pos: usize,
        len: usize,
    }
    const BUF_SIZE: usize = 1 << 26;
    impl<T: Read> SplitWs<T> {
        pub fn new(src: T) -> Self {
            Self {
                src,
                buf: vec![0; BUF_SIZE],
                pos: 0,
                len: 0,
            }
        }
        #[inline(always)]
        fn peek(&self) -> &[u8] {
            unsafe { self.buf.get_unchecked(self.pos..self.len) }
        }
        #[inline(always)]
        fn consume(&mut self, n: usize) -> &[u8] {
            let pos = self.pos;
            self.pos += n;
            unsafe { self.buf.get_unchecked(pos..self.pos) }
        }
        fn read(&mut self) -> usize {
            self.buf.copy_within(self.pos..self.len, 0);
            self.len -= self.pos;
            self.pos = 0;
            if self.len == self.buf.len() {
                self.buf.resize(2 * self.buf.len(), 0);
            }
            loop {
                match self.src.read(&mut self.buf[self.len..]) {
                    Ok(n) => {
                        self.len += n;
                        return n;
                    }
                    Err(e) if e.kind() == io::ErrorKind::WouldBlock => {}
                    Err(e) => panic!("io error: {:?}", e),
                }
            }
        }
    }
    impl<T: Read> Input for SplitWs<T> {
        #[inline]
        fn bytes(&mut self) -> &[u8] {
            loop {
                if let Some(del) = self.peek().iter().position(|c| c.is_ascii_whitespace()) {
                    if del > 0 {
                        let s = self.consume(del + 1);
                        return s.split_last().unwrap().1;
                    } else {
                        self.consume(1);
                    }
                } else if self.read() == 0 {
                    return self.consume(self.len - self.pos);
                }
            }
        }
    }
}
pub mod macros {
    #[macro_export]
    macro_rules ! w { ($ ($ arg : tt) *) => { write ! ($ ($ arg) *) . unwrap () ; } }
    #[macro_export]
    macro_rules ! wln { ($ dst : expr $ (, $ ($ arg : tt) *) ?) => { { writeln ! ($ dst $ (, $ ($ arg) *) ?) . unwrap () ; # [cfg (debug_assertions)] $ dst . flush () . unwrap () ; } } }
    #[macro_export]
    macro_rules! w_iter {
        ($ dst : expr , $ fmt : expr , $ iter : expr , $ delim : expr) => {{
            let mut first = true;
            for elem in $iter {
                if first {
                    w!($dst, $fmt, elem);
                    first = false;
                } else {
                    w!($dst, concat!($delim, $fmt), elem);
                }
            }
        }};
        ($ dst : expr , $ fmt : expr , $ iter : expr) => {
            w_iter!($dst, $fmt, $iter, " ")
        };
    }
    #[macro_export]
    macro_rules ! w_iter_ln { ($ dst : expr , $ ($ t : tt) *) => { { w_iter ! ($ dst , $ ($ t) *) ; wln ! ($ dst) ; } } }
    #[macro_export]
    macro_rules ! e { ($ ($ t : tt) *) => { # [cfg (debug_assertions)] eprint ! ($ ($ t) *) } }
    #[macro_export]
    macro_rules ! eln { ($ ($ t : tt) *) => { # [cfg (debug_assertions)] eprintln ! ($ ($ t) *) } }
    #[macro_export]
    #[doc(hidden)]
    macro_rules ! __tstr { ($ h : expr $ (, $ t : expr) +) => { concat ! (__tstr ! ($ ($ t) ,+) , ", " , __tstr ! (@)) } ; ($ h : expr) => { concat ! (__tstr ! () , " " , __tstr ! (@)) } ; () => { "\x1B[94m[{}:{}]\x1B[0m" } ; (@) => { "\x1B[1;92m{}\x1B[0m = {:?}" } }
    #[macro_export]
    macro_rules ! d { ($ ($ a : expr) ,*) => { if std :: env :: var ("ND") . map (| v | & v == "0") . unwrap_or (true) { eln ! (__tstr ! ($ ($ a) ,*) , file ! () , line ! () , $ (stringify ! ($ a) , $ a) ,*) ; } } ; }
}
0