結果
問題 | No.768 Tapris and Noel play the game on Treeone |
ユーザー | vwxyz |
提出日時 | 2022-05-28 17:35:58 |
言語 | Python3 (3.12.2 + numpy 1.26.4 + scipy 1.12.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 8,412 bytes |
コンパイル時間 | 128 ms |
コンパイル使用メモリ | 13,696 KB |
実行使用メモリ | 43,512 KB |
最終ジャッジ日時 | 2024-09-20 23:14:52 |
合計ジャッジ時間 | 16,517 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 33 ms
11,648 KB |
testcase_01 | AC | 33 ms
11,648 KB |
testcase_02 | WA | - |
testcase_03 | AC | 38 ms
11,520 KB |
testcase_04 | AC | 40 ms
11,520 KB |
testcase_05 | AC | 39 ms
11,648 KB |
testcase_06 | AC | 40 ms
11,648 KB |
testcase_07 | AC | 570 ms
28,028 KB |
testcase_08 | AC | 293 ms
20,224 KB |
testcase_09 | AC | 350 ms
21,888 KB |
testcase_10 | AC | 261 ms
19,328 KB |
testcase_11 | AC | 897 ms
37,220 KB |
testcase_12 | AC | 903 ms
37,468 KB |
testcase_13 | AC | 904 ms
36,704 KB |
testcase_14 | AC | 875 ms
36,660 KB |
testcase_15 | AC | 942 ms
38,236 KB |
testcase_16 | AC | 951 ms
38,356 KB |
testcase_17 | AC | 968 ms
38,916 KB |
testcase_18 | AC | 920 ms
43,512 KB |
testcase_19 | AC | 959 ms
43,480 KB |
testcase_20 | AC | 950 ms
42,500 KB |
testcase_21 | AC | 901 ms
40,832 KB |
20evil_special_uni1.txt | AC | 971 ms
40,176 KB |
20evil_special_uni2.txt | AC | 916 ms
38,384 KB |
ソースコード
import sys readline=sys.stdin.readline class Graph: def __init__(self,V,edges=False,graph=False,directed=False,weighted=False,inf=float("inf")): self.V=V self.directed=directed self.weighted=weighted self.inf=inf if graph: self.graph=graph self.edges=[] for i in range(self.V): if self.weighted: for j,d in self.graph[i]: if self.directed or not self.directed and i<=j: self.edges.append((i,j,d)) else: for j in self.graph[i]: if self.directed or not self.directed and i<=j: self.edges.append((i,j)) else: self.edges=edges self.graph=[[] for i in range(self.V)] if weighted: for i,j,d in self.edges: self.graph[i].append((j,d)) if not self.directed: self.graph[j].append((i,d)) else: for i,j in self.edges: self.graph[i].append(j) if not self.directed: self.graph[j].append(i) def SIV_DFS(self,s,bipartite_graph=False,cycle_detection=False,directed_acyclic=False,euler_tour=False,linked_components=False,lowlink=False,parents=False,postorder=False,preorder=False,subtree_size=False,topological_sort=False,unweighted_dist=False,weighted_dist=False): seen=[False]*self.V finished=[False]*self.V if directed_acyclic or cycle_detection or topological_sort: dag=True if euler_tour: et=[] if linked_components: lc=[] if lowlink: order=[None]*self.V ll=[None]*self.V idx=0 if parents or cycle_detection or lowlink or subtree_size: ps=[None]*self.V if postorder or topological_sort: post=[] if preorder: pre=[] if subtree_size: ss=[1]*self.V if unweighted_dist or bipartite_graph: uwd=[self.inf]*self.V uwd[s]=0 if weighted_dist: wd=[self.inf]*self.V wd[s]=0 stack=[(s,0)] if self.weighted else [s] while stack: if self.weighted: x,d=stack.pop() else: x=stack.pop() if not seen[x]: seen[x]=True stack.append((x,d) if self.weighted else x) if euler_tour: et.append(x) if linked_components: lc.append(x) if lowlink: order[x]=idx ll[x]=idx idx+=1 if preorder: pre.append(x) for y in self.graph[x]: if self.weighted: y,d=y if not seen[y]: stack.append((y,d) if self.weighted else y) if parents or cycle_detection or lowlink or subtree_size: ps[y]=x if unweighted_dist or bipartite_graph: uwd[y]=uwd[x]+1 if weighted_dist: wd[y]=wd[x]+d elif not finished[y]: if (directed_acyclic or cycle_detection or topological_sort) and dag: dag=False if cycle_detection: cd=(y,x) elif not finished[x]: finished[x]=True if euler_tour: et.append(~x) if lowlink: bl=True for y in self.graph[x]: if self.weighted: y,d=y if ps[x]==y and bl: bl=False continue ll[x]=min(ll[x],order[y]) if x!=s: ll[ps[x]]=min(ll[ps[x]],ll[x]) if postorder or topological_sort: post.append(x) if subtree_size: for y in self.graph[x]: if self.weighted: y,d=y if y==ps[x]: continue ss[x]+=ss[y] if bipartite_graph: bg=[[],[]] for tpl in self.edges: x,y=tpl[:2] if self.weighted else tpl if uwd[x]==self.inf or uwd[y]==self.inf: continue if not uwd[x]%2^uwd[y]%2: bg=False break else: for x in range(self.V): if uwd[x]==self.inf: continue bg[uwd[x]%2].append(x) retu=() if bipartite_graph: retu+=(bg,) if cycle_detection: if dag: cd=[] else: y,x=cd cd=self.Route_Restoration(y,x,ps) retu+=(cd,) if directed_acyclic: retu+=(dag,) if euler_tour: retu+=(et,) if linked_components: retu+=(lc,) if lowlink: retu=(ll,) if parents: retu+=(ps,) if postorder: retu+=(post,) if preorder: retu+=(pre,) if subtree_size: retu+=(ss,) if topological_sort: if dag: tp_sort=post[::-1] else: tp_sort=[] retu+=(tp_sort,) if unweighted_dist: retu+=(uwd,) if weighted_dist: retu+=(wd,) if len(retu)==1: retu=retu[0] return retu def Build_Rerooting(self,s,f_transition,f_merge): self.rerooting_s=s self.rerooting_f_transition=f_transition self.rerooting_f_merge=f_merge parents,postorder,preorder=self.SIV_DFS(s,parents=True,postorder=True,preorder=True) self.rerooting_lower_dp=[None]*self.V for x in postorder: self.rerooting_lower_dp[x]=self.rerooting_f_merge([self.rerooting_f_transition(self.rerooting_lower_dp[y]) for y in G.graph[x] if y!=parents[x]]) self.rerooting_upper_dp=[None]*self.V for x in preorder: children=[y for y in self.graph[x] if y!=parents[x]] left_accumule_f=[None]*(len(children)+1) right_accumule_f=[None]*(len(children)+1) left_accumule_f[0]=self.rerooting_f_merge([]) for i in range(1,len(children)+1): left_accumule_f[i]=self.rerooting_f_merge([left_accumule_f[i-1],self.rerooting_f_transition(self.rerooting_lower_dp[children[i-1]])]) right_accumule_f[len(children)]=self.rerooting_f_merge([]) for i in range(len(children)-1,-1,-1): right_accumule_f[i]=self.rerooting_f_merge([right_accumule_f[i+1],self.rerooting_f_transition(self.rerooting_lower_dp[children[i]])]) for i in range(len(children)): if parents[x]!=None: self.rerooting_upper_dp[children[i]]=self.rerooting_f_merge([left_accumule_f[i],right_accumule_f[i+1],self.rerooting_f_transition(self.rerooting_upper_dp[x])]) else: self.rerooting_upper_dp[children[i]]=self.rerooting_f_merge([left_accumule_f[i],right_accumule_f[i+1]]) def Rerooting(self,x): if x==self.rerooting_s: retu=self.rerooting_lower_dp[x] else: retu=self.rerooting_f_merge([self.rerooting_lower_dp[x],self.rerooting_f_transition(self.rerooting_upper_dp[x])]) return retu N=int(readline()) edges=[] for _ in range(N-1): a,b=map(int,readline().split()) a-=1;b-=1 edges.append((a,b)) def trans(x): return not x def merge(lst): if any(lst): return True return False G=Graph(N,edges=edges) G.Build_Rerooting(0,trans,merge) ans_lst=[] for x in range(N): if not G.Rerooting(x): ans_lst.append(x+1) print(len(ans_lst)) print(*ans_lst,sep="\n")