結果

問題 No.768 Tapris and Noel play the game on Treeone
ユーザー vwxyz
提出日時 2022-05-28 17:37:06
言語 Python3
(3.13.1 + numpy 2.2.1 + scipy 1.14.1)
結果
AC  
実行時間 990 ms / 2,000 ms
コード長 8,422 bytes
コンパイル時間 243 ms
コンパイル使用メモリ 13,568 KB
実行使用メモリ 41,840 KB
最終ジャッジ日時 2024-09-20 23:16:49
合計ジャッジ時間 15,769 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 22
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import sys
readline=sys.stdin.readline
class Graph:
def __init__(self,V,edges=False,graph=False,directed=False,weighted=False,inf=float("inf")):
self.V=V
self.directed=directed
self.weighted=weighted
self.inf=inf
if graph:
self.graph=graph
self.edges=[]
for i in range(self.V):
if self.weighted:
for j,d in self.graph[i]:
if self.directed or not self.directed and i<=j:
self.edges.append((i,j,d))
else:
for j in self.graph[i]:
if self.directed or not self.directed and i<=j:
self.edges.append((i,j))
else:
self.edges=edges
self.graph=[[] for i in range(self.V)]
if weighted:
for i,j,d in self.edges:
self.graph[i].append((j,d))
if not self.directed:
self.graph[j].append((i,d))
else:
for i,j in self.edges:
self.graph[i].append(j)
if not self.directed:
self.graph[j].append(i)
def SIV_DFS(self,s,bipartite_graph=False,cycle_detection=False,directed_acyclic=False,euler_tour=False,linked_components=False,lowlink=False
        ,parents=False,postorder=False,preorder=False,subtree_size=False,topological_sort=False,unweighted_dist=False,weighted_dist=False):
seen=[False]*self.V
finished=[False]*self.V
if directed_acyclic or cycle_detection or topological_sort:
dag=True
if euler_tour:
et=[]
if linked_components:
lc=[]
if lowlink:
order=[None]*self.V
ll=[None]*self.V
idx=0
if parents or cycle_detection or lowlink or subtree_size:
ps=[None]*self.V
if postorder or topological_sort:
post=[]
if preorder:
pre=[]
if subtree_size:
ss=[1]*self.V
if unweighted_dist or bipartite_graph:
uwd=[self.inf]*self.V
uwd[s]=0
if weighted_dist:
wd=[self.inf]*self.V
wd[s]=0
stack=[(s,0)] if self.weighted else [s]
while stack:
if self.weighted:
x,d=stack.pop()
else:
x=stack.pop()
if not seen[x]:
seen[x]=True
stack.append((x,d) if self.weighted else x)
if euler_tour:
et.append(x)
if linked_components:
lc.append(x)
if lowlink:
order[x]=idx
ll[x]=idx
idx+=1
if preorder:
pre.append(x)
for y in self.graph[x]:
if self.weighted:
y,d=y
if not seen[y]:
stack.append((y,d) if self.weighted else y)
if parents or cycle_detection or lowlink or subtree_size:
ps[y]=x
if unweighted_dist or bipartite_graph:
uwd[y]=uwd[x]+1
if weighted_dist:
wd[y]=wd[x]+d
elif not finished[y]:
if (directed_acyclic or cycle_detection or topological_sort) and dag:
dag=False
if cycle_detection:
cd=(y,x)
elif not finished[x]:
finished[x]=True
if euler_tour:
et.append(~x)
if lowlink:
bl=True
for y in self.graph[x]:
if self.weighted:
y,d=y
if ps[x]==y and bl:
bl=False
continue
ll[x]=min(ll[x],order[y])
if x!=s:
ll[ps[x]]=min(ll[ps[x]],ll[x])
if postorder or topological_sort:
post.append(x)
if subtree_size:
for y in self.graph[x]:
if self.weighted:
y,d=y
if y==ps[x]:
continue
ss[x]+=ss[y]
if bipartite_graph:
bg=[[],[]]
for tpl in self.edges:
x,y=tpl[:2] if self.weighted else tpl
if uwd[x]==self.inf or uwd[y]==self.inf:
continue
if not uwd[x]%2^uwd[y]%2:
bg=False
break
else:
for x in range(self.V):
if uwd[x]==self.inf:
continue
bg[uwd[x]%2].append(x)
retu=()
if bipartite_graph:
retu+=(bg,)
if cycle_detection:
if dag:
cd=[]
else:
y,x=cd
cd=self.Route_Restoration(y,x,ps)
retu+=(cd,)
if directed_acyclic:
retu+=(dag,)
if euler_tour:
retu+=(et,)
if linked_components:
retu+=(lc,)
if lowlink:
retu=(ll,)
if parents:
retu+=(ps,)
if postorder:
retu+=(post,)
if preorder:
retu+=(pre,)
if subtree_size:
retu+=(ss,)
if topological_sort:
if dag:
tp_sort=post[::-1]
else:
tp_sort=[]
retu+=(tp_sort,)
if unweighted_dist:
retu+=(uwd,)
if weighted_dist:
retu+=(wd,)
if len(retu)==1:
retu=retu[0]
return retu
def Build_Rerooting(self,s,f_transition,f_merge):
self.rerooting_s=s
self.rerooting_f_transition=f_transition
self.rerooting_f_merge=f_merge
parents,postorder,preorder=self.SIV_DFS(s,parents=True,postorder=True,preorder=True)
self.rerooting_lower_dp=[None]*self.V
for x in postorder:
self.rerooting_lower_dp[x]=self.rerooting_f_merge([self.rerooting_f_transition(self.rerooting_lower_dp[y]) for y in G.graph[x] if y!
                =parents[x]])
self.rerooting_upper_dp=[None]*self.V
for x in preorder:
children=[y for y in self.graph[x] if y!=parents[x]]
left_accumule_f=[None]*(len(children)+1)
right_accumule_f=[None]*(len(children)+1)
left_accumule_f[0]=self.rerooting_f_merge([])
for i in range(1,len(children)+1):
left_accumule_f[i]=self.rerooting_f_merge([left_accumule_f[i-1],self.rerooting_f_transition(self.rerooting_lower_dp[children[i-1]])])
right_accumule_f[len(children)]=self.rerooting_f_merge([])
for i in range(len(children)-1,-1,-1):
right_accumule_f[i]=self.rerooting_f_merge([right_accumule_f[i+1],self.rerooting_f_transition(self.rerooting_lower_dp[children[i]])])
for i in range(len(children)):
if parents[x]!=None:
self.rerooting_upper_dp[children[i]]=self.rerooting_f_merge([left_accumule_f[i],right_accumule_f[i+1],self.rerooting_f_transition
                        (self.rerooting_upper_dp[x])])
else:
self.rerooting_upper_dp[children[i]]=self.rerooting_f_merge([left_accumule_f[i],right_accumule_f[i+1]])
def Rerooting(self,x):
if x==self.rerooting_s:
retu=self.rerooting_lower_dp[x]
else:
retu=self.rerooting_f_merge([self.rerooting_lower_dp[x],self.rerooting_f_transition(self.rerooting_upper_dp[x])])
return retu
N=int(readline())
edges=[]
for _ in range(N-1):
a,b=map(int,readline().split())
a-=1;b-=1
edges.append((a,b))
def trans(x):
return not x
def merge(lst):
if any(lst):
return True
return False
G=Graph(N,edges=edges)
G.Build_Rerooting(0,trans,merge)
ans_lst=[]
for x in range(N):
if not G.Rerooting(x):
ans_lst.append(x+1)
print(len(ans_lst))
for ans in ans_lst:
print(ans)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0