結果

問題 No.768 Tapris and Noel play the game on Treeone
ユーザー vwxyzvwxyz
提出日時 2022-05-28 17:37:06
言語 Python3
(3.12.2 + numpy 1.26.4 + scipy 1.12.0)
結果
AC  
実行時間 990 ms / 2,000 ms
コード長 8,422 bytes
コンパイル時間 243 ms
コンパイル使用メモリ 13,568 KB
実行使用メモリ 41,840 KB
最終ジャッジ日時 2024-09-20 23:16:49
合計ジャッジ時間 15,769 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 34 ms
11,648 KB
testcase_01 AC 34 ms
11,520 KB
testcase_02 AC 35 ms
11,776 KB
testcase_03 AC 40 ms
11,776 KB
testcase_04 AC 41 ms
11,648 KB
testcase_05 AC 42 ms
11,520 KB
testcase_06 AC 38 ms
11,648 KB
testcase_07 AC 591 ms
28,024 KB
testcase_08 AC 300 ms
20,352 KB
testcase_09 AC 355 ms
21,888 KB
testcase_10 AC 270 ms
19,328 KB
testcase_11 AC 935 ms
37,344 KB
testcase_12 AC 943 ms
37,760 KB
testcase_13 AC 924 ms
36,828 KB
testcase_14 AC 926 ms
36,652 KB
testcase_15 AC 969 ms
38,352 KB
testcase_16 AC 967 ms
38,404 KB
testcase_17 AC 990 ms
39,164 KB
testcase_18 AC 961 ms
41,840 KB
testcase_19 AC 968 ms
41,560 KB
testcase_20 AC 987 ms
40,364 KB
testcase_21 AC 931 ms
38,728 KB
20evil_special_uni1.txt AC 992 ms
39,176 KB
20evil_special_uni2.txt AC 930 ms
37,540 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
readline=sys.stdin.readline

class Graph:
    def __init__(self,V,edges=False,graph=False,directed=False,weighted=False,inf=float("inf")):
        self.V=V
        self.directed=directed
        self.weighted=weighted
        self.inf=inf
        if graph:
            self.graph=graph
            self.edges=[]
            for i in range(self.V):
                if self.weighted:
                    for j,d in self.graph[i]:
                        if self.directed or not self.directed and i<=j:
                            self.edges.append((i,j,d))
                else:
                    for j in self.graph[i]:
                        if self.directed or not self.directed and i<=j:
                            self.edges.append((i,j))
        else:
            self.edges=edges
            self.graph=[[] for i in range(self.V)]
            if weighted:
                for i,j,d in self.edges:
                    self.graph[i].append((j,d))
                    if not self.directed:
                        self.graph[j].append((i,d))
            else:
                for i,j in self.edges:
                    self.graph[i].append(j)
                    if not self.directed:
                        self.graph[j].append(i)

    def SIV_DFS(self,s,bipartite_graph=False,cycle_detection=False,directed_acyclic=False,euler_tour=False,linked_components=False,lowlink=False,parents=False,postorder=False,preorder=False,subtree_size=False,topological_sort=False,unweighted_dist=False,weighted_dist=False):
        seen=[False]*self.V
        finished=[False]*self.V
        if directed_acyclic or cycle_detection or topological_sort:
            dag=True
        if euler_tour:
            et=[]
        if linked_components:
            lc=[]
        if lowlink:
            order=[None]*self.V
            ll=[None]*self.V
            idx=0
        if parents or cycle_detection or lowlink or subtree_size:
            ps=[None]*self.V
        if postorder or topological_sort:
            post=[]
        if preorder:
            pre=[]
        if subtree_size:
            ss=[1]*self.V
        if unweighted_dist or bipartite_graph:
            uwd=[self.inf]*self.V
            uwd[s]=0
        if weighted_dist:
            wd=[self.inf]*self.V
            wd[s]=0
        stack=[(s,0)] if self.weighted else [s]
        while stack:
            if self.weighted:
                x,d=stack.pop()
            else:
                x=stack.pop()
            if not seen[x]:
                seen[x]=True
                stack.append((x,d) if self.weighted else x)
                if euler_tour:
                    et.append(x)
                if linked_components:
                    lc.append(x)
                if lowlink:
                    order[x]=idx
                    ll[x]=idx
                    idx+=1
                if preorder:
                    pre.append(x)
                for y in self.graph[x]:
                    if self.weighted:
                        y,d=y
                    if not seen[y]:
                        stack.append((y,d) if self.weighted else y)
                        if parents or cycle_detection or lowlink or subtree_size:
                            ps[y]=x
                        if unweighted_dist or bipartite_graph:
                            uwd[y]=uwd[x]+1
                        if weighted_dist:
                            wd[y]=wd[x]+d
                    elif not finished[y]:
                        if (directed_acyclic or cycle_detection or topological_sort) and dag:
                            dag=False
                            if cycle_detection:
                                cd=(y,x)
            elif not finished[x]:
                finished[x]=True
                if euler_tour:
                    et.append(~x)
                if lowlink:
                    bl=True
                    for y in self.graph[x]:
                        if self.weighted:
                            y,d=y
                        if ps[x]==y and bl:
                            bl=False
                            continue
                        ll[x]=min(ll[x],order[y])
                    if x!=s:
                        ll[ps[x]]=min(ll[ps[x]],ll[x])
                if postorder or topological_sort:
                    post.append(x)
                if subtree_size:
                    for y in self.graph[x]:
                        if self.weighted:
                            y,d=y
                        if y==ps[x]:
                            continue
                        ss[x]+=ss[y]
        if bipartite_graph:
            bg=[[],[]]
            for tpl in self.edges:
                x,y=tpl[:2] if self.weighted else tpl
                if uwd[x]==self.inf or uwd[y]==self.inf:
                    continue
                if not uwd[x]%2^uwd[y]%2:
                    bg=False
                    break
            else:
                for x in range(self.V):
                    if uwd[x]==self.inf:
                        continue
                    bg[uwd[x]%2].append(x)
        retu=()
        if bipartite_graph:
            retu+=(bg,)
        if cycle_detection:
            if dag:
                cd=[]
            else:
                y,x=cd
                cd=self.Route_Restoration(y,x,ps)
            retu+=(cd,)
        if directed_acyclic:
            retu+=(dag,)
        if euler_tour:
            retu+=(et,)
        if linked_components:
            retu+=(lc,)
        if lowlink:
            retu=(ll,)
        if parents:
            retu+=(ps,)
        if postorder:
            retu+=(post,)
        if preorder:
            retu+=(pre,)
        if subtree_size:
            retu+=(ss,)
        if topological_sort:
            if dag:
                tp_sort=post[::-1]
            else:
                tp_sort=[]
            retu+=(tp_sort,)
        if unweighted_dist:
            retu+=(uwd,)
        if weighted_dist:
            retu+=(wd,)
        if len(retu)==1:
            retu=retu[0]
        return retu

    def Build_Rerooting(self,s,f_transition,f_merge):
        self.rerooting_s=s
        self.rerooting_f_transition=f_transition
        self.rerooting_f_merge=f_merge
        parents,postorder,preorder=self.SIV_DFS(s,parents=True,postorder=True,preorder=True)
        self.rerooting_lower_dp=[None]*self.V
        for x in postorder:
            self.rerooting_lower_dp[x]=self.rerooting_f_merge([self.rerooting_f_transition(self.rerooting_lower_dp[y]) for y in G.graph[x] if y!=parents[x]])
        self.rerooting_upper_dp=[None]*self.V
        for x in preorder:
            children=[y for y in self.graph[x] if y!=parents[x]]
            left_accumule_f=[None]*(len(children)+1)
            right_accumule_f=[None]*(len(children)+1)
            left_accumule_f[0]=self.rerooting_f_merge([])
            for i in range(1,len(children)+1):
                left_accumule_f[i]=self.rerooting_f_merge([left_accumule_f[i-1],self.rerooting_f_transition(self.rerooting_lower_dp[children[i-1]])])
            right_accumule_f[len(children)]=self.rerooting_f_merge([])
            for i in range(len(children)-1,-1,-1):
                right_accumule_f[i]=self.rerooting_f_merge([right_accumule_f[i+1],self.rerooting_f_transition(self.rerooting_lower_dp[children[i]])])
            for i in range(len(children)):
                if parents[x]!=None:
                    self.rerooting_upper_dp[children[i]]=self.rerooting_f_merge([left_accumule_f[i],right_accumule_f[i+1],self.rerooting_f_transition(self.rerooting_upper_dp[x])])
                else:
                    self.rerooting_upper_dp[children[i]]=self.rerooting_f_merge([left_accumule_f[i],right_accumule_f[i+1]])
 
    def Rerooting(self,x):
        if x==self.rerooting_s:
            retu=self.rerooting_lower_dp[x]
        else:
            retu=self.rerooting_f_merge([self.rerooting_lower_dp[x],self.rerooting_f_transition(self.rerooting_upper_dp[x])])
        return retu

N=int(readline())
edges=[]
for _ in range(N-1):
    a,b=map(int,readline().split())
    a-=1;b-=1
    edges.append((a,b))
def trans(x):
    return not x
def merge(lst):
    if any(lst):
        return True
    return False
G=Graph(N,edges=edges)
G.Build_Rerooting(0,trans,merge)
ans_lst=[]
for x in range(N):
    if not G.Rerooting(x):
        ans_lst.append(x+1)
print(len(ans_lst))
for ans in ans_lst:
    print(ans)
0