結果

問題 No.1955 Not Prime
ユーザー DemystifyDemystify
提出日時 2022-05-29 11:03:33
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 9,087 bytes
コンパイル時間 2,435 ms
コンパイル使用メモリ 225,316 KB
実行使用メモリ 30,940 KB
最終ジャッジ日時 2024-09-20 23:53:58
合計ジャッジ時間 3,536 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 8 ms
7,180 KB
testcase_01 AC 8 ms
7,244 KB
testcase_02 WA -
testcase_03 WA -
testcase_04 AC 9 ms
7,040 KB
testcase_05 AC 8 ms
7,132 KB
testcase_06 AC 7 ms
7,244 KB
testcase_07 AC 13 ms
8,372 KB
testcase_08 AC 12 ms
8,368 KB
testcase_09 AC 15 ms
8,372 KB
testcase_10 AC 11 ms
7,116 KB
testcase_11 AC 47 ms
30,940 KB
testcase_12 AC 10 ms
7,616 KB
testcase_13 AC 16 ms
8,460 KB
testcase_14 AC 9 ms
7,748 KB
testcase_15 AC 10 ms
7,724 KB
testcase_16 AC 12 ms
8,260 KB
testcase_17 AC 17 ms
9,780 KB
testcase_18 AC 15 ms
8,500 KB
testcase_19 AC 18 ms
9,396 KB
testcase_20 AC 9 ms
7,288 KB
testcase_21 AC 10 ms
7,608 KB
testcase_22 WA -
testcase_23 AC 7 ms
7,128 KB
testcase_24 AC 7 ms
7,148 KB
testcase_25 AC 8 ms
7,080 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
// --------------------------------------------------------
#define FOR(i,l,r) for (ll i = (l); i < (r); ++i)
#define RFOR(i,l,r) for (ll i = (r)-1; (l) <= i; --i)
#define REP(i,n) FOR(i,0,n)
#define RREP(i,n) RFOR(i,0,n)
#define ALL(c) (c).begin(), (c).end()
#define RALL(c) (c).rbegin(), (c).rend()
#define SORT(c) sort(ALL(c))
#define RSORT(c) sort(RALL(c))
#define MIN(c) *min_element(ALL(c))
#define MAX(c) *max_element(ALL(c))
#define COUNT(c,v) count(ALL(c),(v))
#define SZ(c) ((ll)(c).size())
#define BIT(b,i) (((b)>>(i)) & 1)
#define PCNT(b) __builtin_popcountll(b)
#define P0(i) (((i) & 1) == 0)
#define P1(i) (((i) & 1) == 1)
#define LB(c,v) distance((c).begin(), lower_bound(ALL(c), (v)))
#define UB(c,v) distance((c).begin(), upper_bound(ALL(c), (v)))
#define UQ(c) SORT(c), (c).erase(unique(ALL(c)), (c).end())
#define elif else if
#ifdef _LOCAL
    #define debug_bar cerr << "--------------------\n";
    #define debug(x) cerr << "l." << __LINE__ << " : " << #x << " = " << (x) << '\n'
    #define debug_pair(x) cerr << "l." << __LINE__ << " : " << #x << " = (" << x.first << "," << x.second << ")\n";
    template<class T> void debug_line(const vector<T>& ans, int l, int r, int L = 0) { cerr << "l." << L << " :"; for (int i = l; i < r; i++) { cerr << ' ' << ans[i]; } cerr << '\n'; }
#else
    #define cerr if (false) cerr
    #define debug_bar
    #define debug(x)
    #define debug_pair(x)
    template<class T> void debug_line([[maybe_unused]] const vector<T>& ans, [[maybe_unused]] int l, [[maybe_unused]] int r, [[maybe_unused]] int L = 0) {}
#endif
template<class... T> void input(T&... a) { (cin >> ... >> a); }
void print() { cout << '\n'; }
template<class T> void print(const T& a) { cout << a << '\n'; }
template<class T, class... Ts> void print(const T& a, const Ts&... b) { cout << a; (cout << ... << (cout << ' ', b)); cout << '\n'; }
template<class T> void cout_line(const vector<T>& ans, int l, int r) { for (int i = l; i < r; i++) { if (i != l) { cout << ' '; } cout << ans[i]; } cout << '\n'; }
template<class T> bool chmin(T& a, const T b) { if (b < a) { a = b; return 1; } return 0; }
template<class T> bool chmax(T& a, const T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> T SUM(const vector<T>& A) { return accumulate(ALL(A), T(0)); }
template<class T> vector<T> cumsum(const vector<T>& A, bool offset = true) { int N = A.size(); vector<T> S(N+1, 0); for (int i = 0; i < N; i++) { S[i+1] = S[i] + A[i]; } if (not offset) { S.erase(S.begin()); } return S; }
ll mod(ll x, ll m) { assert(m != 0); return (x % m + m) % m; }
ll ceil(ll a, ll b) { if (b < 0) { return ceil(-a, -b); } assert(b > 0); return (a < 0 ? a / b : (a + b - 1) / b); }
ll floor(ll a, ll b) { if (b < 0) { return floor(-a, -b); } assert(b > 0); return (a > 0 ? a / b : (a - b + 1) / b); }
ll powint(ll x, ll n) { assert(n >= 0); if (n == 0) { return 1; }; ll res = powint(x, n>>1); res *= res; if (n & 1) { res *= x; } return res; }
pair<ll,ll> divmod(ll a, ll b) { assert(b != 0); ll q = floor(a, b); return make_pair(q, a - q * b); }
ll bitlen(ll b) { if (b <= 0) { return 0; } return (64LL - __builtin_clzll(b)); }
ll digit_len(ll n) { assert(n >= 0); if (n == 0) { return 1; } ll sum = 0; while (n > 0) { sum++; n /= 10; } return sum; }
ll digit_sum(ll n) { assert(n >= 0); ll sum = 0; while (n > 0) { sum += n % 10; n /= 10; } return sum; }
ll digit_prod(ll n) { assert(n >= 0); if (n == 0) { return 0; } ll prod = 1; while (n > 0) { prod *= n % 10; n /= 10; } return prod; }
ll xor_sum(ll x) { assert(0 <= x); switch (x % 4) { case 0: return x; case 1: return 1; case 2: return x ^ 1; case 3: return 0; } assert(false); }
string toupper(const string& S) { string T(S); for (int i = 0; i < (int)T.size(); i++) { T[i] = toupper(T[i]); } return T; }
string tolower(const string& S) { string T(S); for (int i = 0; i < (int)T.size(); i++) { T[i] = tolower(T[i]); } return T; }
int a2i(const char& c) { assert(islower(c)); return (c - 'a'); }
int A2i(const char& c) { assert(isupper(c)); return (c - 'A'); }
int d2i(const char& d) { assert(isdigit(d)); return (d - '0'); }
char i2a(const int& i) { assert(0 <= i && i < 26); return ('a' + i); }
char i2A(const int& i) { assert(0 <= i && i < 26); return ('A' + i); }
char i2d(const int& i) { assert(0 <= i && i <= 9); return ('0' + i); }
using P = pair<ll,ll>;
using VP = vector<P>;
using VVP = vector<VP>;
using VS = vector<string>;
using VVS = vector<VS>;
using VI = vector<int>;
using VVI = vector<VI>;
using VVVI = vector<VVI>;
using VLL = vector<ll>;
using VVLL = vector<VLL>;
using VVVLL = vector<VVLL>;
using VB = vector<bool>;
using VVB = vector<VB>;
using VVVB = vector<VVB>;
using VD = vector<double>;
using VVD = vector<VD>;
using VVVD = vector<VVD>;
using VLD = vector<ld>;
using VVLD = vector<VLD>;
using VVVLD = vector<VVLD>;
const ld EPS = 1e-10;
const ld PI  = acosl(-1.0);
constexpr ll MOD = 1000000007;
// constexpr ll MOD = 998244353;
constexpr int inf = (1 << 30) - 1;   // 1073741824 - 1
constexpr ll INF = (1LL << 62) - 1;  // 4611686018427387904 - 1
// --------------------------------------------------------
#include <atcoder/twosat>
using namespace atcoder;



// エラトステネスの篩
struct eratosthenes {
  public:
    // 前計算
    //   - O(N log log N)
    eratosthenes(int N) : N(N) {
        D.resize(N+1);
        iota(D.begin(), D.end(), 0);
        for (int p : {2, 3, 5}) {
            for (int i = p*p; i <= N; i += p) { if (D[i] == i) { D[i] = p; } }
        }
        vector<int> inc = {4, 2, 4, 2, 4, 6, 2, 6};
        int p = 7, idx = 0;
        int root = floor(sqrt(N) + 0.5);
        while (p <= root) {
            if (D[p] == p) {
                for (int i = p*p; i <= N; i += p) { if (D[i] == i) { D[i] = p; } }
            }
            p += inc[idx++];
            if (idx == 8) { idx = 0; }
        }
    }

    // 素数判定
    //   - O(1)
    bool is_prime(int x) const {
        assert(1 <= x && x <= N);
        if (x == 1) { return false; }
        return D[x] == x;
    }

    // 素因数分解
    //   - O(log x), 厳密には O(Σi ei)
    vector<pair<int,int>> factorize(int x) const {
        assert(1 <= x && x <= N);
        vector<pair<int,int>> F;
        while (x != 1) {
            int p = D[x];
            int e = 0;
            while (x % p == 0) { x /= p; e++; }
            F.emplace_back(p, e);
        }
        return F;
    }

    // 約数列挙
    //   - O(Πi(1+ei))
    //   - ソートされていないことに注意
    vector<int> calc_divisors(int x) const {
        assert(1 <= x && x <= N);

        int n = 1;  // 約数の個数
        vector<pair<int,int>> F;
        while (x != 1) {
            int p = D[x];
            int e = 0;
            while (x % p == 0) { x /= p; e++; }
            F.emplace_back(p, e);
            n *= (1 + e);
        }

        vector<int> divisors(n,1);
        int sz = 1;  // 現在の約数の個数
        for (const auto& [p, e] : F) {
            for (int i = 0; i < sz * e; i++) {
                divisors[sz + i] = divisors[i] * p;
            }
            sz *= (1 + e);
        }
        return divisors;
    }

    // 最小素因数 (least prime factor)
    //   - O(1)
    int lpf(int x) const { assert(1 <= x && x <= N); return D[x]; }

    /** TODO: Verify **/
    // オイラーの φ 関数
    // 1 から x までの整数のうち x と互いに素なものの個数 φ(x)
    //   - O(log x), 厳密には O(Σi ei)
    int euler_phi(int x) const {
        assert(1 <= x && x <= N);
        int res = x;
        while (x != 1) {
            int p = D[x];
            res -= res / p;
            while (x % p == 0) { x /= p; }
        }
        return res;
    }

    // メビウス関数のテーブルを計算する
    //   - O(N)
    vector<int> calc_moebius() const {
        vector<int> moebius(N+1, 0);
        moebius[1] = 1;
        for (int x = 2; x <= N; x++) {
            int y = x / D[x];
            if (D[x] != D[y]) { moebius[x] = -moebius[y]; }
        }
        return moebius;
    }

  private:
    int N;
    vector<int> D;  // 最小素因数 (least prime factor)
};


int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout << fixed << setprecision(15);

    ll N; input(N);
    VLL A(N),B(N); REP(i,N) input(A[i], B[i]);

    eratosthenes era(1e6);

    two_sat ts(N);
    REP(i,N) REP(j,N) if (i != j) {
        int AA = (A[i] * powint(10, digit_len(A[j]))) + A[j];
        int AB = (A[i] * powint(10, digit_len(B[j]))) + B[j];
        int BA = (B[i] * powint(10, digit_len(A[j]))) + A[j];
        int BB = (B[i] * powint(10, digit_len(B[j]))) + B[j];
        if (era.is_prime(AA)) ts.add_clause(i,false,j,true);
        if (era.is_prime(AB)) ts.add_clause(i,false,j,false);
        if (era.is_prime(BA)) ts.add_clause(i,true,j,true);
        if (era.is_prime(BB)) ts.add_clause(i,true,j,false);
    }

    bool ok = ts.satisfiable();
    string ans = (ok ? "Yes" : "No");
    print(ans);

    return 0;
}
0